Yang Li, Yilun Weng, Yue Hui, Jiaqi Wang, Letao Xu, Yang Yang, Guangze Yang, Chun-Xia Zhao
{"title":"Design of stimuli-responsive minimalist heptad surfactants for stable emulsions","authors":"Yang Li, Yilun Weng, Yue Hui, Jiaqi Wang, Letao Xu, Yang Yang, Guangze Yang, Chun-Xia Zhao","doi":"10.1038/s43246-024-00670-6","DOIUrl":null,"url":null,"abstract":"Peptide surfactants have been extensively investigated with various applications in detergents, foods, and pharmaceutics due to their biodegradability, biocompatibility, and customizable structures. Traditional peptide surfactants are often designed in a head-to-tail fashion mimicking chemical surfactants. Alternatively, a side-by-side design pattern based on heptad repeats offers an approach to designing peptide surfactants. However, minimalist peptide design using a single heptad for stabilizing interfaces remains largely unexplored. Here, we design four heptad surfactants (AM1.2, 6H, 6H7K, and HK) responsive to metal ions and compare their emulsification performance with a three-heptad peptide, AM1. Among them, the HK peptide generates emulsions exhibiting good stability over months. We further optimize factors such as buffering salts, ionic strength, and emulsion dilutions to uncover their impacts on emulsion properties. Our findings deepen the understanding of emulsion properties and provide practical insights for characterizing peptide-based emulsions, paving the way for their broader utilization in diverse applications. Peptide surfactants are useful in detergents, foods, and pharmaceutics but their design using a single heptad remains largely unexplored. Here, four heptad surfactants were designed that are responsive to metal ions and show good emulsification properties.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00670-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43246-024-00670-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Peptide surfactants have been extensively investigated with various applications in detergents, foods, and pharmaceutics due to their biodegradability, biocompatibility, and customizable structures. Traditional peptide surfactants are often designed in a head-to-tail fashion mimicking chemical surfactants. Alternatively, a side-by-side design pattern based on heptad repeats offers an approach to designing peptide surfactants. However, minimalist peptide design using a single heptad for stabilizing interfaces remains largely unexplored. Here, we design four heptad surfactants (AM1.2, 6H, 6H7K, and HK) responsive to metal ions and compare their emulsification performance with a three-heptad peptide, AM1. Among them, the HK peptide generates emulsions exhibiting good stability over months. We further optimize factors such as buffering salts, ionic strength, and emulsion dilutions to uncover their impacts on emulsion properties. Our findings deepen the understanding of emulsion properties and provide practical insights for characterizing peptide-based emulsions, paving the way for their broader utilization in diverse applications. Peptide surfactants are useful in detergents, foods, and pharmaceutics but their design using a single heptad remains largely unexplored. Here, four heptad surfactants were designed that are responsive to metal ions and show good emulsification properties.
期刊介绍:
Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.