Xiao Xue, Shuo Wang, Hua-Dong Yao, Lars Davidson, Peter V. Coveney
{"title":"Physics informed data-driven near-wall modelling for lattice Boltzmann simulation of high Reynolds number turbulent flows","authors":"Xiao Xue, Shuo Wang, Hua-Dong Yao, Lars Davidson, Peter V. Coveney","doi":"10.1038/s42005-024-01832-1","DOIUrl":null,"url":null,"abstract":"Data-driven approaches offer novel opportunities for improving the performance of turbulent flow simulations, which are critical to wide-ranging applications from wind farms and aerodynamic designs to weather and climate forecasting. However, current methods for these simulations often require large amounts of data and computational resources. While data-driven methods have been extensively applied to the continuum Navier-Stokes equations, limited work has been done to integrate these methods with the highly scalable lattice Boltzmann method. Here, we present a physics-informed neural network framework for improving lattice Boltzmann-based simulations of near-wall turbulent flow. Using a small amount of data and integrating physical constraints, our model accurately predicts flow behaviour at a wide range of friction Reynolds numbers up to 1.0 × 106. In contradistinction with other models that use direct numerical simulation datasets, this approach reduces data requirements by three orders of magnitude and allows for sparse grid configurations. Our work broadens the scope of lattice Boltzmann applications, enabling efficient large-scale simulations of turbulent flow in diverse contexts. The authors provide a data-driven near-wall modelling framework for the lattice Boltzmann method using IDDES data. Their model can predict flows with friction Reynolds numbers up to 1,000,000 and effectively handle sparse near-wall grids.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-8"},"PeriodicalIF":5.4000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01832-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01832-1","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Data-driven approaches offer novel opportunities for improving the performance of turbulent flow simulations, which are critical to wide-ranging applications from wind farms and aerodynamic designs to weather and climate forecasting. However, current methods for these simulations often require large amounts of data and computational resources. While data-driven methods have been extensively applied to the continuum Navier-Stokes equations, limited work has been done to integrate these methods with the highly scalable lattice Boltzmann method. Here, we present a physics-informed neural network framework for improving lattice Boltzmann-based simulations of near-wall turbulent flow. Using a small amount of data and integrating physical constraints, our model accurately predicts flow behaviour at a wide range of friction Reynolds numbers up to 1.0 × 106. In contradistinction with other models that use direct numerical simulation datasets, this approach reduces data requirements by three orders of magnitude and allows for sparse grid configurations. Our work broadens the scope of lattice Boltzmann applications, enabling efficient large-scale simulations of turbulent flow in diverse contexts. The authors provide a data-driven near-wall modelling framework for the lattice Boltzmann method using IDDES data. Their model can predict flows with friction Reynolds numbers up to 1,000,000 and effectively handle sparse near-wall grids.
期刊介绍:
Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline.
The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.