{"title":"Extracellular RIPK3 Acts as a Danger-Associated Molecular Pattern to Exaggerate Cardiac Ischemia/Reperfusion Injury.","authors":"Wenjia Zhang,Junxia Zhang,Zeyuan Wang,Ting Li,Liu Changyun,Xuya Kang,Xiaomeng Cui,Jingli Yang,Huilin Qu,Jiaxin Duanmu,Ying Peng,Kai Wang,Li Jin,Peng Xie,Wen Zheng,Haibao Shang,Yahan Liu,Zhuang Tian,Zhenyu Liu,Ye Jin,Yingjia Li,Nan Li,Xiaozhen Zhuo,Yue Wu,Xiaolu Shi,Runhao Ma,Yueshen Sun,Kai Zhang,Xiangming Fang,Xiaomin Hu,Erdan Dong,Shuyang Zhang,Yan Zhang","doi":"10.1161/circulationaha.123.068595","DOIUrl":null,"url":null,"abstract":"BACKGROUND\r\nCardiac ischemia/reperfusion (I/R) injury has emerged as an important therapeutic target for ischemic heart disease. Currently, there is no effective therapy for reducing cardiac I/R injury. Damage-associated molecular patterns are endogenous molecules released after cellular damage to exaggerate tissue inflammation and injury. RIPK3 (receptor-interacting protein kinase 3), a well-established intracellular mediator of cell necroptosis and inflammation, serves as a circulating biomarker of multiple diseases. However, whether extracellular RIPK3 also exerts biological functions in cardiac I/R injury remains totally unknown.\r\n\r\nMETHODS\r\nPatients with acute myocardial infarction receiving percutaneous coronary intervention (PCI) were recruited independently in the discovery cohort (103 patients) and validation cohort (334 patients), and major adverse cardiovascular events were recorded. Plasma samples were collected before and after PCI (6 and 24 h) for RIPK3 concentration measurement. Cultured neonatal rat ventricular myocytes, macrophages and endothelial cells, and in vivo mouse models with myocardial injury induced by I/R (or hypoxia/reoxygenation) were used to investigate the role and mechanisms of extracellular RIPK3. Another cohort including patients with acute myocardial infarction receiving PCI and healthy volunteers was recruited to further explore the mechanisms of extracellular RIPK3.\r\n\r\nRESULTS\r\nIn the discovery cohort, elevated plasma RIPK3 levels after PCI are associated with poorer short- and long-term outcomes in patients with acute myocardial infarction, as confirmed in the validation cohort. In both cultured cells and in vivo mouse models, recombinant RIPK3 protein exaggerated myocardial I/R (or hypoxia/reoxygenation) injury, which was alleviated by the RIPK3 antibody. Mechanistically, RIPK3 acted as a damage-associated molecular pattern and bound with RAGE (receptor of advanced glycation end-products), subsequently activating CaMKII (Ca2+/calmodulin-dependent kinase II) to elicit the detrimental effects. The positive correlation between plasma RIPK3 concentrations and CaMKII phosphorylation in human peripheral blood mononuclear cells was confirmed.\r\n\r\nCONCLUSIONS\r\nWe identified the positive relationship between plasma RIPK3 concentrations and the risk of major adverse cardiovascular events in patients with acute myocardial infarction receiving PCI. As a damage-associated molecular pattern, extracellular RIPK3 plays a causal role in multiple pathological conditions during cardiac I/R injury through RAGE/CaMKII signaling. These findings expand our understanding of the physiological and pathological roles of RIPK3, and also provide a promising therapeutic target for myocardial I/R injury and the associated complications.","PeriodicalId":10331,"journal":{"name":"Circulation","volume":"58 1","pages":""},"PeriodicalIF":35.5000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/circulationaha.123.068595","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
BACKGROUND
Cardiac ischemia/reperfusion (I/R) injury has emerged as an important therapeutic target for ischemic heart disease. Currently, there is no effective therapy for reducing cardiac I/R injury. Damage-associated molecular patterns are endogenous molecules released after cellular damage to exaggerate tissue inflammation and injury. RIPK3 (receptor-interacting protein kinase 3), a well-established intracellular mediator of cell necroptosis and inflammation, serves as a circulating biomarker of multiple diseases. However, whether extracellular RIPK3 also exerts biological functions in cardiac I/R injury remains totally unknown.
METHODS
Patients with acute myocardial infarction receiving percutaneous coronary intervention (PCI) were recruited independently in the discovery cohort (103 patients) and validation cohort (334 patients), and major adverse cardiovascular events were recorded. Plasma samples were collected before and after PCI (6 and 24 h) for RIPK3 concentration measurement. Cultured neonatal rat ventricular myocytes, macrophages and endothelial cells, and in vivo mouse models with myocardial injury induced by I/R (or hypoxia/reoxygenation) were used to investigate the role and mechanisms of extracellular RIPK3. Another cohort including patients with acute myocardial infarction receiving PCI and healthy volunteers was recruited to further explore the mechanisms of extracellular RIPK3.
RESULTS
In the discovery cohort, elevated plasma RIPK3 levels after PCI are associated with poorer short- and long-term outcomes in patients with acute myocardial infarction, as confirmed in the validation cohort. In both cultured cells and in vivo mouse models, recombinant RIPK3 protein exaggerated myocardial I/R (or hypoxia/reoxygenation) injury, which was alleviated by the RIPK3 antibody. Mechanistically, RIPK3 acted as a damage-associated molecular pattern and bound with RAGE (receptor of advanced glycation end-products), subsequently activating CaMKII (Ca2+/calmodulin-dependent kinase II) to elicit the detrimental effects. The positive correlation between plasma RIPK3 concentrations and CaMKII phosphorylation in human peripheral blood mononuclear cells was confirmed.
CONCLUSIONS
We identified the positive relationship between plasma RIPK3 concentrations and the risk of major adverse cardiovascular events in patients with acute myocardial infarction receiving PCI. As a damage-associated molecular pattern, extracellular RIPK3 plays a causal role in multiple pathological conditions during cardiac I/R injury through RAGE/CaMKII signaling. These findings expand our understanding of the physiological and pathological roles of RIPK3, and also provide a promising therapeutic target for myocardial I/R injury and the associated complications.
期刊介绍:
Circulation is a platform that publishes a diverse range of content related to cardiovascular health and disease. This includes original research manuscripts, review articles, and other contributions spanning observational studies, clinical trials, epidemiology, health services, outcomes studies, and advancements in basic and translational research. The journal serves as a vital resource for professionals and researchers in the field of cardiovascular health, providing a comprehensive platform for disseminating knowledge and fostering advancements in the understanding and management of cardiovascular issues.