{"title":"Monolayer-fluorescence counting for ultrasensitive detection of tumour cell-derived extracellular vesicles using a step-wedge microfluidic platform","authors":"","doi":"10.1016/j.snb.2024.136786","DOIUrl":null,"url":null,"abstract":"<div><div>Extracellular vesicles have emerged as significant noninvasive tumour biomarkers, and ultrasensitive detection methods are important for early cancer diagnosis. Here, a monolayer-fluorescence counting strategy was developed for the ultrasensitive detection of extracellular vesicles using a microfluidic platform. Extracellular vesicles were specially captured and separated from complex matrix by immune magnetic microbeads (IMBs). With an enhancing acoustic wave microfluidic channel, the magnetic-extracellular vesicles immune complex was adequately mixed and reacted with antibody-modified fluorescence microbeads (IFBs). Using a newly designed step-wedge microfluidic structure, micrometer-size particles were trapped in large numbers with monolayer in the step zone, and the fluidic resistance was reduced through the wedge structure. This detection signal of the fluorescence-labelled immune sandwich complex could be read by counting, avoiding background interference and achieving an ultrasensitive detection with a detection limit of 850 particles/mL. Moreover, this method showed strong reliability and specificity in clinic samples. In addition, a miniaturized detection device was developed based on this microfluidic platform, improving this detection automation.</div></div>","PeriodicalId":425,"journal":{"name":"Sensors and Actuators B: Chemical","volume":null,"pages":null},"PeriodicalIF":8.0000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators B: Chemical","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925400524015168","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Extracellular vesicles have emerged as significant noninvasive tumour biomarkers, and ultrasensitive detection methods are important for early cancer diagnosis. Here, a monolayer-fluorescence counting strategy was developed for the ultrasensitive detection of extracellular vesicles using a microfluidic platform. Extracellular vesicles were specially captured and separated from complex matrix by immune magnetic microbeads (IMBs). With an enhancing acoustic wave microfluidic channel, the magnetic-extracellular vesicles immune complex was adequately mixed and reacted with antibody-modified fluorescence microbeads (IFBs). Using a newly designed step-wedge microfluidic structure, micrometer-size particles were trapped in large numbers with monolayer in the step zone, and the fluidic resistance was reduced through the wedge structure. This detection signal of the fluorescence-labelled immune sandwich complex could be read by counting, avoiding background interference and achieving an ultrasensitive detection with a detection limit of 850 particles/mL. Moreover, this method showed strong reliability and specificity in clinic samples. In addition, a miniaturized detection device was developed based on this microfluidic platform, improving this detection automation.
期刊介绍:
Sensors & Actuators, B: Chemical is an international journal focused on the research and development of chemical transducers. It covers chemical sensors and biosensors, chemical actuators, and analytical microsystems. The journal is interdisciplinary, aiming to publish original works showcasing substantial advancements beyond the current state of the art in these fields, with practical applicability to solving meaningful analytical problems. Review articles are accepted by invitation from an Editor of the journal.