Nano-priming: Improving plant nutrition to support the establishment of sustainable agriculture under heavy metal stress

Mohammad Faizan , Pooja Sharma , Haider Sultan , Pravej Alam , Shafaque Sehar , Vishnu D. Rajput , Shamsul Hayat
{"title":"Nano-priming: Improving plant nutrition to support the establishment of sustainable agriculture under heavy metal stress","authors":"Mohammad Faizan ,&nbsp;Pooja Sharma ,&nbsp;Haider Sultan ,&nbsp;Pravej Alam ,&nbsp;Shafaque Sehar ,&nbsp;Vishnu D. Rajput ,&nbsp;Shamsul Hayat","doi":"10.1016/j.plana.2024.100096","DOIUrl":null,"url":null,"abstract":"<div><div>Heavy metals (HMs) have become a severe problem for all living organisms, including plants, because of their unprecedented bioaccumulation and biomagnification in the environment. When exposed to hazardous quantities of HMs, various essential cellular macromolecules, including DNA and nuclear proteins, can interact with HMs, causing an overproduction of reactive oxygen species (ROS). Recently, several techniques have been used to ameliorate HM toxicity, including nano-priming, which effectively modulates plant physiological and biochemical responses under HM stress. This review summarizes the literature on the effectiveness of nano-priming for boosting germination, growth, photosynthetic efficiency, biomass accumulation, and crop yield. Additionally, information regarding the application of nano-priming to reduce HM toxicity in plants is reviewed. Future research prospects are indicated by highlighting the knowledge gaps in the current literature and underlining the need optimize and validate nano-priming techniques and their physiological effects on plants.</div></div>","PeriodicalId":101029,"journal":{"name":"Plant Nano Biology","volume":"10 ","pages":"Article 100096"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Nano Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773111124000391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Heavy metals (HMs) have become a severe problem for all living organisms, including plants, because of their unprecedented bioaccumulation and biomagnification in the environment. When exposed to hazardous quantities of HMs, various essential cellular macromolecules, including DNA and nuclear proteins, can interact with HMs, causing an overproduction of reactive oxygen species (ROS). Recently, several techniques have been used to ameliorate HM toxicity, including nano-priming, which effectively modulates plant physiological and biochemical responses under HM stress. This review summarizes the literature on the effectiveness of nano-priming for boosting germination, growth, photosynthetic efficiency, biomass accumulation, and crop yield. Additionally, information regarding the application of nano-priming to reduce HM toxicity in plants is reviewed. Future research prospects are indicated by highlighting the knowledge gaps in the current literature and underlining the need optimize and validate nano-priming techniques and their physiological effects on plants.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳米填料:改善植物营养,支持在重金属胁迫下建立可持续农业
重金属(HMs)因其在环境中前所未有的生物蓄积性和生物放大性,已成为包括植物在内的所有生物体面临的一个严重问题。当暴露在有害的 HMs 中时,各种重要的细胞大分子(包括 DNA 和核蛋白)会与 HMs 相互作用,导致过量产生活性氧(ROS)。最近,有几种技术被用于改善 HM 的毒性,包括纳米引物,它能有效调节 HM 胁迫下的植物生理和生化反应。本综述总结了有关纳米引物在促进发芽、生长、光合效率、生物量积累和作物产量方面有效性的文献。此外,还综述了有关应用纳米填料降低植物 HM 毒性的信息。通过强调当前文献中的知识空白,并强调优化和验证纳米填料技术及其对植物生理效应的必要性,指出了未来的研究前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
期刊最新文献
Optimization of AgNPs production from Fusarium oxysporum H39 and its effectiveness as nanopesticides facing Pectobacterium carotovorum Investigate growth of Paris polyphylla under synergic effects of CeO2 and SiO2 using as fertilizers Green approaches for the synthesis of silver nanoparticle and its augmentation in Seed. germination, growth, and antioxidant level in Capsicum annuum L. Impact of zinc oxide nanoparticles on biosynthesis of thymoquinone in cell cultures of Nigella sativa Harnessing the potential of zinc oxide nanoparticles and their derivatives as nanofertilizers: Trends and perspectives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1