Anar Khuderchuluun , Munkh-Uchral Erdenebat , Erkhembaatar Dashdavaa , Ki-Chul Kwon , Seok-Hee Jeon , Hoonjong Kang , Nam Kim
{"title":"Comprehensive optimization for full-color holographic stereogram printing system based on single-shot depth estimation and time-controlled exposure","authors":"Anar Khuderchuluun , Munkh-Uchral Erdenebat , Erkhembaatar Dashdavaa , Ki-Chul Kwon , Seok-Hee Jeon , Hoonjong Kang , Nam Kim","doi":"10.1016/j.optlastec.2024.111966","DOIUrl":null,"url":null,"abstract":"<div><div>A comprehensive optimization method for a full-color holographic stereogram (HS) printing system based on single-shot depth estimation for real-world objects and time-controlled exposure is proposed. Both processing steps, including digital content generation and optical printing, are optimized to ensure possible high-quality three-dimensional (3D) holographic image printing, rapid computation, and proper full-color visualization. In the digital content generation, first a high-resolution two-dimensional (2D) image of the real object is captured, and its depth map is then estimated via a pre-trained convolutional neural network (CNN) model, ensuring an identical resolution with a given 2D image. As a post-processing, the unnecessary scenes and background are removed from the captured color image, without losing the main information of a primary object. Then, a hogel array (HA) is obtained by utilizing the estimated depth map and a post-processed color image through a fast inverse-directed propagation (IDP) method. Each hogel undergoes unique non-iterative phase modulation in a quite short time without the degradation of image quality while the chromatic dispersion errors are minimized. Finally, the hogels are sequentially printed onto holographic material using a time-controlled exposure, to provide the color-balanced full-color reconstruction using a single spatial light modulator (SLM). The overall procedure is seamlessly performed automatically via custom-designed graphical user interface. This study experimentally confirmed a simple and effective optimization for HS printing systems in both digital content generation and optical printing unit.</div></div>","PeriodicalId":19511,"journal":{"name":"Optics and Laser Technology","volume":"181 ","pages":"Article 111966"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Laser Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030399224014245","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
A comprehensive optimization method for a full-color holographic stereogram (HS) printing system based on single-shot depth estimation for real-world objects and time-controlled exposure is proposed. Both processing steps, including digital content generation and optical printing, are optimized to ensure possible high-quality three-dimensional (3D) holographic image printing, rapid computation, and proper full-color visualization. In the digital content generation, first a high-resolution two-dimensional (2D) image of the real object is captured, and its depth map is then estimated via a pre-trained convolutional neural network (CNN) model, ensuring an identical resolution with a given 2D image. As a post-processing, the unnecessary scenes and background are removed from the captured color image, without losing the main information of a primary object. Then, a hogel array (HA) is obtained by utilizing the estimated depth map and a post-processed color image through a fast inverse-directed propagation (IDP) method. Each hogel undergoes unique non-iterative phase modulation in a quite short time without the degradation of image quality while the chromatic dispersion errors are minimized. Finally, the hogels are sequentially printed onto holographic material using a time-controlled exposure, to provide the color-balanced full-color reconstruction using a single spatial light modulator (SLM). The overall procedure is seamlessly performed automatically via custom-designed graphical user interface. This study experimentally confirmed a simple and effective optimization for HS printing systems in both digital content generation and optical printing unit.
期刊介绍:
Optics & Laser Technology aims to provide a vehicle for the publication of a broad range of high quality research and review papers in those fields of scientific and engineering research appertaining to the development and application of the technology of optics and lasers. Papers describing original work in these areas are submitted to rigorous refereeing prior to acceptance for publication.
The scope of Optics & Laser Technology encompasses, but is not restricted to, the following areas:
•development in all types of lasers
•developments in optoelectronic devices and photonics
•developments in new photonics and optical concepts
•developments in conventional optics, optical instruments and components
•techniques of optical metrology, including interferometry and optical fibre sensors
•LIDAR and other non-contact optical measurement techniques, including optical methods in heat and fluid flow
•applications of lasers to materials processing, optical NDT display (including holography) and optical communication
•research and development in the field of laser safety including studies of hazards resulting from the applications of lasers (laser safety, hazards of laser fume)
•developments in optical computing and optical information processing
•developments in new optical materials
•developments in new optical characterization methods and techniques
•developments in quantum optics
•developments in light assisted micro and nanofabrication methods and techniques
•developments in nanophotonics and biophotonics
•developments in imaging processing and systems