Review on ensemble meta-heuristics and reinforcement learning for manufacturing scheduling problems

IF 4 3区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Computers & Electrical Engineering Pub Date : 2024-10-18 DOI:10.1016/j.compeleceng.2024.109780
Yaping Fu , Yifeng Wang , Kaizhou Gao , Min Huang
{"title":"Review on ensemble meta-heuristics and reinforcement learning for manufacturing scheduling problems","authors":"Yaping Fu ,&nbsp;Yifeng Wang ,&nbsp;Kaizhou Gao ,&nbsp;Min Huang","doi":"10.1016/j.compeleceng.2024.109780","DOIUrl":null,"url":null,"abstract":"<div><div>With the development of Artificial Intelligence, Internet of Things and Big Data, intelligent manufacturing has become a new and popular trend in manufacturing industries. Manufacturing scheduling is one of the most critical components in intelligent manufacturing systems. It aims to optimize some specific objectives, e.g., production cost, customer satisfaction and energy efficiency, by making optimal decisions of processing routes, machine assignment, operation sequence, etc. Due to manufacturing scheduling problems featured with large scale, strong coupling and real-time optimization requirements, it is a huge challenge to effectively cope with them. As the extensive and successful applications of artificial intelligence in manufacturing areas, meta-heuristics and reinforcement learning methods achieve great breakthroughs in addressing manufacturing scheduling problems. It is noted that a hybridization of meta-heuristic and reinforcement learning algorithms has been recently proposed to solve such complicated problems. Firstly, this work summarizes the designs of meta-heuristics and reinforcement learning methods for dealing with manufacturing scheduling problems, respectively. Secondly, we review the hybridization of meta-heuristics and reinforcement learning methods in solving manufacturing scheduling problems, where the essential roles of reinforcement learning for meta-heuristics are analyzed and discussed from the views of ensemble methods, optimization criteria, scheduling models, performance evaluation metrics and stopping conditions. Finally, we conclude this work and sum up future research directions regarding the hybridization methods in handling manufacturing scheduling problems.</div></div>","PeriodicalId":50630,"journal":{"name":"Computers & Electrical Engineering","volume":"120 ","pages":"Article 109780"},"PeriodicalIF":4.0000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Electrical Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045790624007079","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

With the development of Artificial Intelligence, Internet of Things and Big Data, intelligent manufacturing has become a new and popular trend in manufacturing industries. Manufacturing scheduling is one of the most critical components in intelligent manufacturing systems. It aims to optimize some specific objectives, e.g., production cost, customer satisfaction and energy efficiency, by making optimal decisions of processing routes, machine assignment, operation sequence, etc. Due to manufacturing scheduling problems featured with large scale, strong coupling and real-time optimization requirements, it is a huge challenge to effectively cope with them. As the extensive and successful applications of artificial intelligence in manufacturing areas, meta-heuristics and reinforcement learning methods achieve great breakthroughs in addressing manufacturing scheduling problems. It is noted that a hybridization of meta-heuristic and reinforcement learning algorithms has been recently proposed to solve such complicated problems. Firstly, this work summarizes the designs of meta-heuristics and reinforcement learning methods for dealing with manufacturing scheduling problems, respectively. Secondly, we review the hybridization of meta-heuristics and reinforcement learning methods in solving manufacturing scheduling problems, where the essential roles of reinforcement learning for meta-heuristics are analyzed and discussed from the views of ensemble methods, optimization criteria, scheduling models, performance evaluation metrics and stopping conditions. Finally, we conclude this work and sum up future research directions regarding the hybridization methods in handling manufacturing scheduling problems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
针对生产调度问题的集合元启发式和强化学习综述
随着人工智能、物联网和大数据的发展,智能制造已成为制造业的一种新的流行趋势。生产调度是智能制造系统中最关键的组成部分之一。它旨在通过对加工路线、机器分配、操作顺序等做出最优决策,优化某些特定目标,如生产成本、客户满意度和能效。由于生产调度问题具有规模大、耦合性强、实时优化等特点,如何有效应对这些问题是一个巨大的挑战。随着人工智能在制造领域的广泛和成功应用,元启发式和强化学习方法在解决制造调度问题上取得了重大突破。最近,有人提出了元启发式算法和强化学习算法的混合算法来解决此类复杂问题。首先,本文总结了元启发式和强化学习方法分别用于处理生产调度问题的设计。其次,我们回顾了元启发式和强化学习方法在解决生产调度问题中的混合应用,从集合方法、优化准则、调度模型、性能评价指标和停止条件等方面分析和讨论了强化学习对元启发式的重要作用。最后,我们对这项工作进行了总结,并归纳了混合方法在处理生产调度问题方面的未来研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Electrical Engineering
Computers & Electrical Engineering 工程技术-工程:电子与电气
CiteScore
9.20
自引率
7.00%
发文量
661
审稿时长
47 days
期刊介绍: The impact of computers has nowhere been more revolutionary than in electrical engineering. The design, analysis, and operation of electrical and electronic systems are now dominated by computers, a transformation that has been motivated by the natural ease of interface between computers and electrical systems, and the promise of spectacular improvements in speed and efficiency. Published since 1973, Computers & Electrical Engineering provides rapid publication of topical research into the integration of computer technology and computational techniques with electrical and electronic systems. The journal publishes papers featuring novel implementations of computers and computational techniques in areas like signal and image processing, high-performance computing, parallel processing, and communications. Special attention will be paid to papers describing innovative architectures, algorithms, and software tools.
期刊最新文献
Efficient Bayesian ECG denoising using adaptive covariance estimation and nonlinear Kalman Filtering Time domain correlation entropy image conversion: A new method for fault diagnosis of vehicle-mounted cable terminals The coupled Kaplan–Yorke-Logistic map for the image encryption applications Video anomaly detection using transformers and ensemble of convolutional auto-encoders Enhancing the performance of graphene and LCP 1x2 rectangular microstrip antenna arrays for terahertz applications using photonic band gap structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1