Hybridized Brazilian–Bowein type spectral gradient projection method for constrained nonlinear equations

Jitsupa Deepho , Abdulkarim Hassan Ibrahim , Auwal Bala Abubakar , Maggie Aphane
{"title":"Hybridized Brazilian–Bowein type spectral gradient projection method for constrained nonlinear equations","authors":"Jitsupa Deepho ,&nbsp;Abdulkarim Hassan Ibrahim ,&nbsp;Auwal Bala Abubakar ,&nbsp;Maggie Aphane","doi":"10.1016/j.rico.2024.100483","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes a hybridized Brazilian and Bowein derivative-free spectral gradient projection method for solving systems of convex-constrained nonlinear equations. The method avoids solving any subproblems in each iteration. Global convergence is established under appropriate assumptions on the functions involved. Additionally, numerical experiments are conducted to evaluate the algorithm’s performance, providing evidence of its efficiency compared to similar algorithms from the existing literature. The results demonstrate that the method outperforms some existing approaches in terms of the number of iterations, function evaluations, and time required to obtain a solution based on the examples considered.</div></div>","PeriodicalId":34733,"journal":{"name":"Results in Control and Optimization","volume":"17 ","pages":"Article 100483"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Control and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666720724001139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a hybridized Brazilian and Bowein derivative-free spectral gradient projection method for solving systems of convex-constrained nonlinear equations. The method avoids solving any subproblems in each iteration. Global convergence is established under appropriate assumptions on the functions involved. Additionally, numerical experiments are conducted to evaluate the algorithm’s performance, providing evidence of its efficiency compared to similar algorithms from the existing literature. The results demonstrate that the method outperforms some existing approaches in terms of the number of iterations, function evaluations, and time required to obtain a solution based on the examples considered.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
约束非线性方程的混合巴西-伯温型谱梯度投影法
本文提出了一种混合巴西法和伯温无导数谱梯度投影法,用于求解凸约束非线性方程系统。该方法避免在每次迭代中求解任何子问题。在对相关函数进行适当假设的情况下,确定了全局收敛性。此外,还进行了数值实验来评估该算法的性能,以证明其与现有文献中类似算法相比的效率。结果表明,根据所考虑的示例,该方法在迭代次数、函数评估以及获得解决方案所需的时间方面都优于一些现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Results in Control and Optimization
Results in Control and Optimization Mathematics-Control and Optimization
CiteScore
3.00
自引率
0.00%
发文量
51
审稿时长
91 days
期刊最新文献
Optimal control analysis of a mathematical model for guava nutrients in an integrated farming with cost-effectiveness Observer-based fuzzy T–S control with an estimation error guarantee for MPPT of a photovoltaic battery charger in partial shade conditions Satellite imagery, big data, IoT and deep learning techniques for wheat yield prediction in Morocco Selective opposition based constrained barnacle mating optimization: Theory and applications Comparative exploration on EEG signal filtering using window control methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1