Fatigue life modeling for a low alloy steel after long-term thermal aging

IF 5.7 2区 材料科学 Q1 ENGINEERING, MECHANICAL International Journal of Fatigue Pub Date : 2024-10-11 DOI:10.1016/j.ijfatigue.2024.108645
Long Jin , Ming-Liang Zhu , Shang-Lin Zhang , Min Yang , Tian-Da Yu , Fu-Zhen Xuan
{"title":"Fatigue life modeling for a low alloy steel after long-term thermal aging","authors":"Long Jin ,&nbsp;Ming-Liang Zhu ,&nbsp;Shang-Lin Zhang ,&nbsp;Min Yang ,&nbsp;Tian-Da Yu ,&nbsp;Fu-Zhen Xuan","doi":"10.1016/j.ijfatigue.2024.108645","DOIUrl":null,"url":null,"abstract":"<div><div>Fatigue failure of materials has a considerable impact on the safety of equipment in service. In this study, axially tensile and low cycle fatigue tests were conducted on a low alloy steel after accelerated thermal aged at 450 °C for 10,000 h. The experimental results indicate that the ultimate and yield strengths increase moderately, while the fatigue life of specimens experience a slight decrease in this circumstance. The fracture analysis demonstrates that the bainite breaking facilitates the fatigue crack initiation and propagation after thermal aging, which is accompanied by a decrease in plastic strain amplitude. Therefore, the plastic strain amplitude is considered as an indicator of thermal aging in fatigue life modeling for the low alloy steel. Finally, a novel life model that incorporates both aging time and temperature was proposed for rapid prediction of low cycle fatigue life. It is assumed that this model promotes reliable fatigue life prediction in low alloy steels under various thermal aging circumstances, as well as the extrapolation of fatigue performance of the material in service.</div></div>","PeriodicalId":14112,"journal":{"name":"International Journal of Fatigue","volume":"190 ","pages":"Article 108645"},"PeriodicalIF":5.7000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fatigue","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142112324005048","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Fatigue failure of materials has a considerable impact on the safety of equipment in service. In this study, axially tensile and low cycle fatigue tests were conducted on a low alloy steel after accelerated thermal aged at 450 °C for 10,000 h. The experimental results indicate that the ultimate and yield strengths increase moderately, while the fatigue life of specimens experience a slight decrease in this circumstance. The fracture analysis demonstrates that the bainite breaking facilitates the fatigue crack initiation and propagation after thermal aging, which is accompanied by a decrease in plastic strain amplitude. Therefore, the plastic strain amplitude is considered as an indicator of thermal aging in fatigue life modeling for the low alloy steel. Finally, a novel life model that incorporates both aging time and temperature was proposed for rapid prediction of low cycle fatigue life. It is assumed that this model promotes reliable fatigue life prediction in low alloy steels under various thermal aging circumstances, as well as the extrapolation of fatigue performance of the material in service.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低合金钢长期热老化后的疲劳寿命建模
材料的疲劳失效对设备的使用安全有很大影响。实验结果表明,在这种情况下,试样的极限强度和屈服强度适度提高,而疲劳寿命却略有下降。断裂分析表明,贝氏体断裂有利于热时效后疲劳裂纹的萌发和扩展,同时伴随着塑性应变振幅的减小。因此,在低合金钢的疲劳寿命模型中,塑性应变振幅被视为热老化的一个指标。最后,为了快速预测低循环疲劳寿命,我们提出了一种包含老化时间和温度的新型寿命模型。假定该模型能可靠地预测低合金钢在各种热老化情况下的疲劳寿命,并推断材料在使用中的疲劳性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Fatigue
International Journal of Fatigue 工程技术-材料科学:综合
CiteScore
10.70
自引率
21.70%
发文量
619
审稿时长
58 days
期刊介绍: Typical subjects discussed in International Journal of Fatigue address: Novel fatigue testing and characterization methods (new kinds of fatigue tests, critical evaluation of existing methods, in situ measurement of fatigue degradation, non-contact field measurements) Multiaxial fatigue and complex loading effects of materials and structures, exploring state-of-the-art concepts in degradation under cyclic loading Fatigue in the very high cycle regime, including failure mode transitions from surface to subsurface, effects of surface treatment, processing, and loading conditions Modeling (including degradation processes and related driving forces, multiscale/multi-resolution methods, computational hierarchical and concurrent methods for coupled component and material responses, novel methods for notch root analysis, fracture mechanics, damage mechanics, crack growth kinetics, life prediction and durability, and prediction of stochastic fatigue behavior reflecting microstructure and service conditions) Models for early stages of fatigue crack formation and growth that explicitly consider microstructure and relevant materials science aspects Understanding the influence or manufacturing and processing route on fatigue degradation, and embedding this understanding in more predictive schemes for mitigation and design against fatigue Prognosis and damage state awareness (including sensors, monitoring, methodology, interactive control, accelerated methods, data interpretation) Applications of technologies associated with fatigue and their implications for structural integrity and reliability. This includes issues related to design, operation and maintenance, i.e., life cycle engineering Smart materials and structures that can sense and mitigate fatigue degradation Fatigue of devices and structures at small scales, including effects of process route and surfaces/interfaces.
期刊最新文献
Corrosion fatigue behavior of cast iron in simulated combustion product solutions of ammonia and methanol fuels A new nonlinear fatigue cumulative damage model based on load interaction and strength degradation Damage mechanisms of Ti60 under different uniaxial/multiaxial thermo-mechanical loading modes Effect of three-stage heat treatment on the composite waveform and variable amplitude fatigue properties of TC4 titanium alloy pulsed laser-arc hybrid welded joints A strain-interfaced digital twin solution for corner fatigue crack growth using Bayesian inference
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1