{"title":"The role and mechanism of TgCWIN2-mediated changes of photo-assimilates in modulating early development of Torreya grandis seeds","authors":"Jinwei Suo , Jiayue Zhong , Minmin Yang, Qianxi Li, Yuanyuan Hu, Weiwu Yu, Jingwei Yan, Jiasheng Wu","doi":"10.1016/j.plaphy.2024.109188","DOIUrl":null,"url":null,"abstract":"<div><div>Early seed development is vital for plant reproduction, but the processes behind this in gymnosperms like <em>Torreya grandis</em>, which has a low rate of normal early-developed seeds, are not well understood. To fill this knowledge gap, we embarked on a comprehensive investigation encompassing the morphology and phenology of seed development in <em>T. grandis</em>. Using the <sup>13</sup>C labelling analysis, coupled with leaf removal and seed thinning treatments, we observed a substantial increase in the content of photo-assimilate, an almost 10% increase in sucrose content under seed thinning treatments, thereby leading to an increase in the proportion of normal early-developed seeds, reaching 15%. Concurrently, through the integration of multi-omics analyses and transient overexpression validation, we identified cell wall invertase coding gene, <em>TgCWIN2</em>, which plays a pivotal role in sucrose cleavage during the early development of <em>T. grandis</em> seeds. Further gene co-expression, dual-luciferase assay, and yeast one-hybrid assay revealed that TgWRKY31 was a candidate regulator of <em>TgCWIN2</em>, positively influencing its expression by direct binding to the <em>TgCWIN2</em> promoter. Notably, <em>TgWRKY31</em> transient overexpression substantially enhances the expression of <em>TgCWIN2</em>, thereby contributing to a higher proportion of normal early-developed seeds. Our findings not only provide a comprehensive understanding of the underlying mechanisms governing the early development of <em>T. grandis</em> seeds, but are also essential for establishing strategies to enhance early seed development and improve yield.</div></div>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0981942824008568","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Early seed development is vital for plant reproduction, but the processes behind this in gymnosperms like Torreya grandis, which has a low rate of normal early-developed seeds, are not well understood. To fill this knowledge gap, we embarked on a comprehensive investigation encompassing the morphology and phenology of seed development in T. grandis. Using the 13C labelling analysis, coupled with leaf removal and seed thinning treatments, we observed a substantial increase in the content of photo-assimilate, an almost 10% increase in sucrose content under seed thinning treatments, thereby leading to an increase in the proportion of normal early-developed seeds, reaching 15%. Concurrently, through the integration of multi-omics analyses and transient overexpression validation, we identified cell wall invertase coding gene, TgCWIN2, which plays a pivotal role in sucrose cleavage during the early development of T. grandis seeds. Further gene co-expression, dual-luciferase assay, and yeast one-hybrid assay revealed that TgWRKY31 was a candidate regulator of TgCWIN2, positively influencing its expression by direct binding to the TgCWIN2 promoter. Notably, TgWRKY31 transient overexpression substantially enhances the expression of TgCWIN2, thereby contributing to a higher proportion of normal early-developed seeds. Our findings not only provide a comprehensive understanding of the underlying mechanisms governing the early development of T. grandis seeds, but are also essential for establishing strategies to enhance early seed development and improve yield.
期刊介绍:
Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement.
Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB.
Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.