Effect of crossing warp arrangements on delamination resistance of 3D woven composite T-joints under in-plane tensile loading

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES Composites Science and Technology Pub Date : 2024-10-12 DOI:10.1016/j.compscitech.2024.110907
Ziyue Wei , Xiaogang Chen , Constantinos Soutis
{"title":"Effect of crossing warp arrangements on delamination resistance of 3D woven composite T-joints under in-plane tensile loading","authors":"Ziyue Wei ,&nbsp;Xiaogang Chen ,&nbsp;Constantinos Soutis","doi":"10.1016/j.compscitech.2024.110907","DOIUrl":null,"url":null,"abstract":"<div><div>An experimental study for investigating the delamination behaviour of 3D woven composite T-joints with weave variations and optimising weave architectures is carried out. This study involves 10 types of crossing warp architectures at the junction. Quasi-static tensile load is applied to two flanges of 3D woven composite T-joints to evaluate the in-plane mechanical performance. The crossing warp architecture effectively improves the in-plane mechanical performance. Results indicate a significant influence of crossing warp arrangements on failure modes of the 3D woven composite T-joints. The use of internal crossing warp architectures leads to severe delamination in the 3D woven composite T-joints while the composite T-joints with 3D woven external crossing warps primarily fail due to the debonding of fibres and matrix and fibre breakage. The optimal weave architecture for 3D woven composite T-joints is confirmed by analysing the in-plane mechanical behaviour with different crossing warp arrangements and proportions. Regardless of the crossing warp proportions, the external crossing warp architectures outperformed their internal counterparts in resisting delamination, resulting in a maximum increase of 68.75 %, 30.04 % and 116.81 % in modulus, strength and failure strain respectively.</div></div>","PeriodicalId":283,"journal":{"name":"Composites Science and Technology","volume":"258 ","pages":"Article 110907"},"PeriodicalIF":8.3000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266353824004779","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

An experimental study for investigating the delamination behaviour of 3D woven composite T-joints with weave variations and optimising weave architectures is carried out. This study involves 10 types of crossing warp architectures at the junction. Quasi-static tensile load is applied to two flanges of 3D woven composite T-joints to evaluate the in-plane mechanical performance. The crossing warp architecture effectively improves the in-plane mechanical performance. Results indicate a significant influence of crossing warp arrangements on failure modes of the 3D woven composite T-joints. The use of internal crossing warp architectures leads to severe delamination in the 3D woven composite T-joints while the composite T-joints with 3D woven external crossing warps primarily fail due to the debonding of fibres and matrix and fibre breakage. The optimal weave architecture for 3D woven composite T-joints is confirmed by analysing the in-plane mechanical behaviour with different crossing warp arrangements and proportions. Regardless of the crossing warp proportions, the external crossing warp architectures outperformed their internal counterparts in resisting delamination, resulting in a maximum increase of 68.75 %, 30.04 % and 116.81 % in modulus, strength and failure strain respectively.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
平面拉伸载荷下交叉经纱排列对三维编织复合材料 T 型接头抗分层能力的影响
为研究具有编织变化的三维编织复合材料 T 型接头的分层行为并优化编织结构,我们开展了一项实验研究。这项研究涉及 10 种交接处的交叉经纱结构。对三维编织复合材料 T 型接头的两个翼缘施加准静态拉伸载荷,以评估平面内的机械性能。交叉经纱结构有效地改善了平面力学性能。结果表明,交叉经纱排列对三维编织复合材料 T 型接头的失效模式有重大影响。使用内部交叉经纱结构会导致三维编织复合材料 T 形接头出现严重分层,而使用三维编织外部交叉经纱的复合材料 T 形接头则主要由于纤维与基体脱粘和纤维断裂而失效。通过分析不同交叉经纱排列和比例下的面内机械性能,确认了三维编织复合材料 T 形接头的最佳编织结构。无论交叉经纱比例如何,外部交叉经纱结构在抗分层方面都优于内部交叉经纱结构,其模量、强度和破坏应变的最大增幅分别为 68.75%、30.04% 和 116.81%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Composites Science and Technology
Composites Science and Technology 工程技术-材料科学:复合
CiteScore
16.20
自引率
9.90%
发文量
611
审稿时长
33 days
期刊介绍: Composites Science and Technology publishes refereed original articles on the fundamental and applied science of engineering composites. The focus of this journal is on polymeric matrix composites with reinforcements/fillers ranging from nano- to macro-scale. CSTE encourages manuscripts reporting unique, innovative contributions to the physics, chemistry, materials science and applied mechanics aspects of advanced composites. Besides traditional fiber reinforced composites, novel composites with significant potential for engineering applications are encouraged.
期刊最新文献
Egg white-derived nanocomposite microspheres for alveolar bone defects management Dual covalent bond induced high thermally conductive polyimide composite films based on CNT@CN complex filler Anti-interference flexible temperature-sensitive/strain-sensing aerogel fiber for cooperative monitoring of human body temperature and movement information Symmetric sandwich–like rubber composites for “green” electromagnetic interference shielding and thermal insulation Concurrent optimization of continuous carbon fiber-reinforced composites with multi-scale components considering the manufacturing constraint
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1