Elevated CO2 concentration enhances plant growth, photosynthesis, and ion homeostasis of soybean under salt-alkaline stress

IF 4.5 2区 生物学 Q2 ENVIRONMENTAL SCIENCES Environmental and Experimental Botany Pub Date : 2024-10-09 DOI:10.1016/j.envexpbot.2024.106000
{"title":"Elevated CO2 concentration enhances plant growth, photosynthesis, and ion homeostasis of soybean under salt-alkaline stress","authors":"","doi":"10.1016/j.envexpbot.2024.106000","DOIUrl":null,"url":null,"abstract":"<div><div>Salt-alkaline stress adversely affects growth and productivity of soybean. In the event of global climate change, the effects of elevated CO<sub>2</sub> concentration (<em>e</em>CO<sub>2</sub>) and salt-alkaline stress on soybean remain unclear. This study investigated the combined effects of elevated CO<sub>2</sub> concentration (700 μmol·moL<sup>−1</sup>) and salt-alkaline stress on soybean growth, gas exchange, pigments profiles, antioxidative enzyme activities, osmolyte accumulation, Na<sup>+</sup> and K<sup>+</sup> contents, and genes involved in ion homeostasis. This study suggested that <em>e</em>CO<sub>2</sub> improved plant physiological performance due to the greater net photosynthetic rate (+212.49 %) and water use efficiency (+92.86 %). Both salt-alkaline stress and <em>e</em>CO<sub>2</sub> significantly increased catalase (CAT) activity in leaves and stems, significantly increased superoxide dismutase (SOD) activity in stems, and significantly increased peroxidase (POD) activity in whole plants of soybean. <em>e</em>CO<sub>2</sub> significantly inhibited Na<sup>+</sup> absorption as indicated by decreased Na<sup>+</sup> contents in whole plants under salt-alkaline stress accompanied by lower relative electrical conductivity, thus reducing osmotic and ionic stress. <em>e</em>CO<sub>2</sub> induced enhancement of expressions of gene encoding the ion transporter of <em>GmHKT1;2</em>, <em>GmHKT1;5</em>, <em>GmHKT1;6</em>, <em>GmNHX5</em>, and <em>GmSOS1</em> in stems mediated Na<sup>+</sup> and K<sup>+</sup> transport, thus benefiting to keep ions homeostasis. These results suggest that <em>e</em>CO<sub>2</sub> contributes to enhancing soybean tolerance to saline-alkaline stress.</div></div>","PeriodicalId":11758,"journal":{"name":"Environmental and Experimental Botany","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental and Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098847224003587","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Salt-alkaline stress adversely affects growth and productivity of soybean. In the event of global climate change, the effects of elevated CO2 concentration (eCO2) and salt-alkaline stress on soybean remain unclear. This study investigated the combined effects of elevated CO2 concentration (700 μmol·moL−1) and salt-alkaline stress on soybean growth, gas exchange, pigments profiles, antioxidative enzyme activities, osmolyte accumulation, Na+ and K+ contents, and genes involved in ion homeostasis. This study suggested that eCO2 improved plant physiological performance due to the greater net photosynthetic rate (+212.49 %) and water use efficiency (+92.86 %). Both salt-alkaline stress and eCO2 significantly increased catalase (CAT) activity in leaves and stems, significantly increased superoxide dismutase (SOD) activity in stems, and significantly increased peroxidase (POD) activity in whole plants of soybean. eCO2 significantly inhibited Na+ absorption as indicated by decreased Na+ contents in whole plants under salt-alkaline stress accompanied by lower relative electrical conductivity, thus reducing osmotic and ionic stress. eCO2 induced enhancement of expressions of gene encoding the ion transporter of GmHKT1;2, GmHKT1;5, GmHKT1;6, GmNHX5, and GmSOS1 in stems mediated Na+ and K+ transport, thus benefiting to keep ions homeostasis. These results suggest that eCO2 contributes to enhancing soybean tolerance to saline-alkaline stress.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二氧化碳浓度升高可促进盐碱胁迫下大豆的植物生长、光合作用和离子平衡
盐碱胁迫对大豆的生长和产量有不利影响。在全球气候变化的情况下,二氧化碳浓度(eCO2)升高和盐碱胁迫对大豆的影响仍不清楚。本研究调查了二氧化碳浓度升高(700 μmol-moL-1)和盐碱胁迫对大豆生长、气体交换、色素谱、抗氧化酶活性、渗透溶质积累、Na+和K+含量以及离子平衡相关基因的综合影响。该研究表明,eCO2 可提高净光合速率(+212.49 %)和水分利用效率(+92.86 %),从而改善植物的生理表现。盐碱胁迫和 eCO2 都能显著提高大豆叶片和茎中过氧化氢酶(CAT)的活性,显著提高茎中超氧化物歧化酶(SOD)的活性,显著提高全株过氧化物酶(POD)的活性。eCO2 能显著抑制 Na+ 的吸收,表现在盐碱胁迫下整株植物中 Na+ 含量降低,同时相对电导率降低,从而减轻渗透胁迫和离子胁迫。这些结果表明,eCO2 有助于提高大豆对盐碱胁迫的耐受性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental and Experimental Botany
Environmental and Experimental Botany 环境科学-环境科学
CiteScore
9.30
自引率
5.30%
发文量
342
审稿时长
26 days
期刊介绍: Environmental and Experimental Botany (EEB) publishes research papers on the physical, chemical, biological, molecular mechanisms and processes involved in the responses of plants to their environment. In addition to research papers, the journal includes review articles. Submission is in agreement with the Editors-in-Chief. The Journal also publishes special issues which are built by invited guest editors and are related to the main themes of EEB. The areas covered by the Journal include: (1) Responses of plants to heavy metals and pollutants (2) Plant/water interactions (salinity, drought, flooding) (3) Responses of plants to radiations ranging from UV-B to infrared (4) Plant/atmosphere relations (ozone, CO2 , temperature) (5) Global change impacts on plant ecophysiology (6) Biotic interactions involving environmental factors.
期刊最新文献
Genome-wide identification and expression analysis of autophagy-related genes (ATGs), revealing ATG8a and ATG18b participating in drought stress in Phoebe bournei Nickel phytoremediation potential of Plantago major L.: Transcriptome analysis Synergistic enhancement of biomass allocation from leaves to stem by far-red light and warm temperature can lead to growth reductions Assessing the effects of early and timely sowing on wheat cultivar HD 2967 under current and future tropospheric ozone scenarios Integrated physiological, transcriptomic and rhizospheric microbial community analysis unveil the high tolerance of woody bamboo Dendrocalamus brandisii under cadmium toxicity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1