{"title":"Effects of hydrogen on the fretting wear behavior of laser cladded FeCoCrNiMo0.2 high entropy alloy coating","authors":"Junjun Jin , Zhiyi Zhang , Bing Chen , Xiangyang Wu , Feifei Qiu , Zhenghong Fu , Wenjing Chen , Guoqing Gou","doi":"10.1016/j.wear.2024.205587","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates laser-cladded high entropy alloy (HEA) coatings on high-speed train axles to enhance wear resistance under specific fretting conditions. Axles in humid and acidic environments absorb hydrogen, leading to accumulation in grain boundaries, which weakens their structure and causes damage under alternating stress. Despite this, the impact of hydrogen damage on the fretting wear behavior of HEA coatings has not been explored. To address this, we performed fretting wear tests on a laser-cladded FeCoCrNiMo<sub>0.2</sub> coating and a GCr15 steel ball friction system, evaluating their performance before and after hydrogen exposure. The results of the study indicate that under a constant load of F<sub>n</sub> = 10N and a displacement amplitude of D = 50 μm, the friction coefficient, maximum wear depth, wear volume, and wear rate increased when the system was in the hydrogen charging state compared to the non-hydrogen charging state. Specifically, the friction coefficient increased from 0.60 to 0.93, the maximum wear depth increased from 2.82 μm to 3.63 μm, the wear volume increased from 14.106 × 10<sup>4</sup>μm<sup>3</sup> to 22.098 × 10<sup>4</sup>μm<sup>3</sup>, and the wear rate increased from 28.213 × 10<sup>−6</sup> mm/Nm to 36.600 × 10<sup>−6</sup> mm/Nm. Under the hydrogen charging state, the friction coefficient, maximum wear depth, wear volume, and wear rate all increased. This is due to hydrogen damage, including the formation of pitting pits and cracks on the surface of the coating, stress concentration, and brittle failure caused by hydrogen infiltration into the material. The presence of hydrogen makes the surface of the coating more prone to detachment, resulting in finer wear debris, deeper grooves, and increased oxidation. These factors accelerate the wear of the coating. This finding will contribute to the development and improvement of advanced surface modification techniques for materials in the hydrogen environment.</div></div>","PeriodicalId":23970,"journal":{"name":"Wear","volume":"560 ","pages":"Article 205587"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wear","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043164824003521","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates laser-cladded high entropy alloy (HEA) coatings on high-speed train axles to enhance wear resistance under specific fretting conditions. Axles in humid and acidic environments absorb hydrogen, leading to accumulation in grain boundaries, which weakens their structure and causes damage under alternating stress. Despite this, the impact of hydrogen damage on the fretting wear behavior of HEA coatings has not been explored. To address this, we performed fretting wear tests on a laser-cladded FeCoCrNiMo0.2 coating and a GCr15 steel ball friction system, evaluating their performance before and after hydrogen exposure. The results of the study indicate that under a constant load of Fn = 10N and a displacement amplitude of D = 50 μm, the friction coefficient, maximum wear depth, wear volume, and wear rate increased when the system was in the hydrogen charging state compared to the non-hydrogen charging state. Specifically, the friction coefficient increased from 0.60 to 0.93, the maximum wear depth increased from 2.82 μm to 3.63 μm, the wear volume increased from 14.106 × 104μm3 to 22.098 × 104μm3, and the wear rate increased from 28.213 × 10−6 mm/Nm to 36.600 × 10−6 mm/Nm. Under the hydrogen charging state, the friction coefficient, maximum wear depth, wear volume, and wear rate all increased. This is due to hydrogen damage, including the formation of pitting pits and cracks on the surface of the coating, stress concentration, and brittle failure caused by hydrogen infiltration into the material. The presence of hydrogen makes the surface of the coating more prone to detachment, resulting in finer wear debris, deeper grooves, and increased oxidation. These factors accelerate the wear of the coating. This finding will contribute to the development and improvement of advanced surface modification techniques for materials in the hydrogen environment.
期刊介绍:
Wear journal is dedicated to the advancement of basic and applied knowledge concerning the nature of wear of materials. Broadly, topics of interest range from development of fundamental understanding of the mechanisms of wear to innovative solutions to practical engineering problems. Authors of experimental studies are expected to comment on the repeatability of the data, and whenever possible, conduct multiple measurements under similar testing conditions. Further, Wear embraces the highest standards of professional ethics, and the detection of matching content, either in written or graphical form, from other publications by the current authors or by others, may result in rejection.