{"title":"Optimum thickness design method for micro-shell structure embedded in 3D macrostructure","authors":"Rina Nagai , Masatoshi Shimoda , Musaddiq Al Ali","doi":"10.1016/j.finel.2024.104266","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we propose a multiscale thickness optimization method for designing micro-shell structure assuming that the macrostructure consists of multiple micro-shell structures. The micro-shell structures are connected to the macrostructure using the NIAH (Novel numerical implementation of asymptotic homogenization) method. The distributed thickness of the micro-shell structures is used as design variable. A squared error norm between actual and target displacements is minimized for controlling the displacements at arbitrary points of the macrostructure to the target values under the total volume constraint including the volume of the micro-shell structures. This design is formulated as a distributed optimization problem, and the thickness gradient function is theoretically derived. The derived sensitivity function is applied to the scalar-type H<sup>1</sup> gradient method to efficiently obtain the optimal thickness distribution of the micro-shell structures. Numerical examples demonstrate the effectiveness of the proposed method to optimize the thickness distribution of complex micro-shell structures.</div></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":"242 ","pages":"Article 104266"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Elements in Analysis and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168874X24001604","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we propose a multiscale thickness optimization method for designing micro-shell structure assuming that the macrostructure consists of multiple micro-shell structures. The micro-shell structures are connected to the macrostructure using the NIAH (Novel numerical implementation of asymptotic homogenization) method. The distributed thickness of the micro-shell structures is used as design variable. A squared error norm between actual and target displacements is minimized for controlling the displacements at arbitrary points of the macrostructure to the target values under the total volume constraint including the volume of the micro-shell structures. This design is formulated as a distributed optimization problem, and the thickness gradient function is theoretically derived. The derived sensitivity function is applied to the scalar-type H1 gradient method to efficiently obtain the optimal thickness distribution of the micro-shell structures. Numerical examples demonstrate the effectiveness of the proposed method to optimize the thickness distribution of complex micro-shell structures.
期刊介绍:
The aim of this journal is to provide ideas and information involving the use of the finite element method and its variants, both in scientific inquiry and in professional practice. The scope is intentionally broad, encompassing use of the finite element method in engineering as well as the pure and applied sciences. The emphasis of the journal will be the development and use of numerical procedures to solve practical problems, although contributions relating to the mathematical and theoretical foundations and computer implementation of numerical methods are likewise welcomed. Review articles presenting unbiased and comprehensive reviews of state-of-the-art topics will also be accommodated.