Optimum thickness design method for micro-shell structure embedded in 3D macrostructure

IF 3.5 3区 工程技术 Q1 MATHEMATICS, APPLIED Finite Elements in Analysis and Design Pub Date : 2024-10-17 DOI:10.1016/j.finel.2024.104266
Rina Nagai , Masatoshi Shimoda , Musaddiq Al Ali
{"title":"Optimum thickness design method for micro-shell structure embedded in 3D macrostructure","authors":"Rina Nagai ,&nbsp;Masatoshi Shimoda ,&nbsp;Musaddiq Al Ali","doi":"10.1016/j.finel.2024.104266","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we propose a multiscale thickness optimization method for designing micro-shell structure assuming that the macrostructure consists of multiple micro-shell structures. The micro-shell structures are connected to the macrostructure using the NIAH (Novel numerical implementation of asymptotic homogenization) method. The distributed thickness of the micro-shell structures is used as design variable. A squared error norm between actual and target displacements is minimized for controlling the displacements at arbitrary points of the macrostructure to the target values under the total volume constraint including the volume of the micro-shell structures. This design is formulated as a distributed optimization problem, and the thickness gradient function is theoretically derived. The derived sensitivity function is applied to the scalar-type H<sup>1</sup> gradient method to efficiently obtain the optimal thickness distribution of the micro-shell structures. Numerical examples demonstrate the effectiveness of the proposed method to optimize the thickness distribution of complex micro-shell structures.</div></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":"242 ","pages":"Article 104266"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Elements in Analysis and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168874X24001604","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we propose a multiscale thickness optimization method for designing micro-shell structure assuming that the macrostructure consists of multiple micro-shell structures. The micro-shell structures are connected to the macrostructure using the NIAH (Novel numerical implementation of asymptotic homogenization) method. The distributed thickness of the micro-shell structures is used as design variable. A squared error norm between actual and target displacements is minimized for controlling the displacements at arbitrary points of the macrostructure to the target values under the total volume constraint including the volume of the micro-shell structures. This design is formulated as a distributed optimization problem, and the thickness gradient function is theoretically derived. The derived sensitivity function is applied to the scalar-type H1 gradient method to efficiently obtain the optimal thickness distribution of the micro-shell structures. Numerical examples demonstrate the effectiveness of the proposed method to optimize the thickness distribution of complex micro-shell structures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三维宏观结构中嵌入微壳结构的最佳厚度设计方法
在本研究中,我们假设宏观结构由多个微壳结构组成,提出了一种用于设计微壳结构的多尺度厚度优化方法。使用 NIAH(渐进均质化的新颖数值实现)方法将微壳结构与宏观结构连接起来。微壳结构的分布厚度被用作设计变量。在包括微壳结构体积在内的总体积约束条件下,最小化实际位移与目标位移之间的平方误差规范,以控制宏观结构任意点的位移达到目标值。该设计被表述为分布式优化问题,并从理论上推导出厚度梯度函数。将推导出的灵敏度函数应用于标量型 H1 梯度法,可有效地获得微壳结构的最佳厚度分布。数值实例证明了所提方法在优化复杂微壳结构厚度分布方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.80
自引率
3.20%
发文量
92
审稿时长
27 days
期刊介绍: The aim of this journal is to provide ideas and information involving the use of the finite element method and its variants, both in scientific inquiry and in professional practice. The scope is intentionally broad, encompassing use of the finite element method in engineering as well as the pure and applied sciences. The emphasis of the journal will be the development and use of numerical procedures to solve practical problems, although contributions relating to the mathematical and theoretical foundations and computer implementation of numerical methods are likewise welcomed. Review articles presenting unbiased and comprehensive reviews of state-of-the-art topics will also be accommodated.
期刊最新文献
Application of zonal Reduced-Order-Modeling to tire rolling simulation An enhanced single Gaussian point continuum finite element formulation using automatic differentiation Robust multi-physical-material topology optimization with thermal-self-weight uncertain loads Sequential sensor placement for damage detection under frequency-domain dynamics An assumed enhanced strain finite element formulation for modeling hydraulic fracture growth in a thermoporoelastic medium
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1