Injectable hydrogels for Fenton-like Mn2+/Fe2+ delivery with enhanced chemodynamic therapy prevent osteosarcoma recurrence and promote wound healing after excision surgery
Lutong Wang , Haoyu Guo , Weiyue Zhang , Xingyin Li , Ziliang Su , Xin Huang
{"title":"Injectable hydrogels for Fenton-like Mn2+/Fe2+ delivery with enhanced chemodynamic therapy prevent osteosarcoma recurrence and promote wound healing after excision surgery","authors":"Lutong Wang , Haoyu Guo , Weiyue Zhang , Xingyin Li , Ziliang Su , Xin Huang","doi":"10.1016/j.mtbio.2024.101297","DOIUrl":null,"url":null,"abstract":"<div><div>Local recurrence of osteosarcoma and wound healing after excision surgery are major challenges in clinical research. The present anti-tumor treatments could inhibit normal tissues, resulting in difficulties in surgical wound healing. In this study, we constructed an injectable hydrogel as a platform to co-deliver MnO<sub>2</sub> nanoparticles and ferrocene Fc, termed as (MnO<sub>2</sub>/Fc)@PLGA for osteosarcoma treatment and wound healing after excision. By simple local injection, the hydrogel could form a protective barrier on the surgical wound after osteosarcoma excision, which could promote wound healing and steady release of MnO<sub>2</sub>/Fc nanoparticles. The released MnO<sub>2</sub>/Fc might undergo the Fenton reaction through Mn<sup>2+</sup>/Fe<sup>2+</sup> to inhibit osteosarcoma cells with chemodynamic therapy (CDT). Furthermore, MnO<sub>2</sub> could catalyze endogenous H<sub>2</sub>O<sub>2</sub> to produce O<sub>2</sub>, which eliminates the adverse effects of H<sub>2</sub>O<sub>2</sub> and remodels the hypoxic state in the local lesions. The increased O<sub>2</sub> facilitated surgical wound healing and anti-tumor effects by regulating the hypoxia inducible factor-1 functions. In conclusion, (MnO<sub>2</sub>/Fc)@PLGA hydrogel could effectively prevent local recurrence of osteosarcoma and promote wound healing after excision surgery, thereby providing a novel strategy for tumor treatment and tissue repair.</div></div>","PeriodicalId":18310,"journal":{"name":"Materials Today Bio","volume":"29 ","pages":"Article 101297"},"PeriodicalIF":8.7000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Bio","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590006424003582","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Local recurrence of osteosarcoma and wound healing after excision surgery are major challenges in clinical research. The present anti-tumor treatments could inhibit normal tissues, resulting in difficulties in surgical wound healing. In this study, we constructed an injectable hydrogel as a platform to co-deliver MnO2 nanoparticles and ferrocene Fc, termed as (MnO2/Fc)@PLGA for osteosarcoma treatment and wound healing after excision. By simple local injection, the hydrogel could form a protective barrier on the surgical wound after osteosarcoma excision, which could promote wound healing and steady release of MnO2/Fc nanoparticles. The released MnO2/Fc might undergo the Fenton reaction through Mn2+/Fe2+ to inhibit osteosarcoma cells with chemodynamic therapy (CDT). Furthermore, MnO2 could catalyze endogenous H2O2 to produce O2, which eliminates the adverse effects of H2O2 and remodels the hypoxic state in the local lesions. The increased O2 facilitated surgical wound healing and anti-tumor effects by regulating the hypoxia inducible factor-1 functions. In conclusion, (MnO2/Fc)@PLGA hydrogel could effectively prevent local recurrence of osteosarcoma and promote wound healing after excision surgery, thereby providing a novel strategy for tumor treatment and tissue repair.
期刊介绍:
Materials Today Bio is a multidisciplinary journal that specializes in the intersection between biology and materials science, chemistry, physics, engineering, and medicine. It covers various aspects such as the design and assembly of new structures, their interaction with biological systems, functionalization, bioimaging, therapies, and diagnostics in healthcare. The journal aims to showcase the most significant advancements and discoveries in this field. As part of the Materials Today family, Materials Today Bio provides rigorous peer review, quick decision-making, and high visibility for authors. It is indexed in Scopus, PubMed Central, Emerging Sources, Citation Index (ESCI), and Directory of Open Access Journals (DOAJ).