{"title":"The influence of Fe2+ on the self-assembly of a bipyridine containing homopolymer: From bowl-shaped nanoparticles to vesicles","authors":"Yirong Fan, Tao Wang, Hui Sun","doi":"10.1016/j.eurpolymj.2024.113502","DOIUrl":null,"url":null,"abstract":"<div><div>Metal ion coordination has critical influence on the self-assembly behavior of amphiphilic polymers and the morphology of the obtained assemblies. Herein, an amphiphilic homopolymer with 2,2′-bipyridine (BPy) as side chain is synthesized (noted as PBPyAA), which can self-assemble into bowl-shaped nanoparticles (BNPs) in tetrahydrofuran (THF)/water. Taking advantage of the coordination interaction between BPy and metal ions, Fe<sup>2+</sup> is chosen to regulate the self-assembly behavior and the morphology of the assemblies of PBPyAA in two pathways. (Ⅰ) The aqueous solution of Fe<sup>2+</sup> with various concentrations is added to the THF solution of PBPyAA during self-assembly. (Ⅱ) Fe<sup>2+</sup> is added into the THF solution of PBPyAA before self-assembly, followed by the addition of deionized water to promote the self-assembly. The results show that the pathway Ⅰ facilitates the coordination of BPy and Fe<sup>2+</sup>. With the increase of the concentration of Fe<sup>2+</sup> aqueous solution, the coordination efficiency of BPy increases from 0.419 % to 7.789 %, leading to the transformation of BNPs to vesicles. Though the coordination efficiency of BPy also increases with the concentration of Fe<sup>2+</sup> in pathway Ⅱ, which is still quite low of 0.274 % to 0.366 %, and the morphology of the BNPs barely changes. In addition, ethylene diamine tetraacetic acid (EDTA), a strong chelating agent, is also added to promote the competitive complexation with BPy, resulting in the dissociation of BPy and Fe<sup>2+</sup> and the reversible transformation from vesicles to BNPs. Overall, the effect of Fe<sup>2+</sup> coordination on the self-assembly behavior of PBPyAA in two pathways is investigated and the reversible transformation of BNPs to vesicles is also achieved.</div></div>","PeriodicalId":315,"journal":{"name":"European Polymer Journal","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014305724007638","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Metal ion coordination has critical influence on the self-assembly behavior of amphiphilic polymers and the morphology of the obtained assemblies. Herein, an amphiphilic homopolymer with 2,2′-bipyridine (BPy) as side chain is synthesized (noted as PBPyAA), which can self-assemble into bowl-shaped nanoparticles (BNPs) in tetrahydrofuran (THF)/water. Taking advantage of the coordination interaction between BPy and metal ions, Fe2+ is chosen to regulate the self-assembly behavior and the morphology of the assemblies of PBPyAA in two pathways. (Ⅰ) The aqueous solution of Fe2+ with various concentrations is added to the THF solution of PBPyAA during self-assembly. (Ⅱ) Fe2+ is added into the THF solution of PBPyAA before self-assembly, followed by the addition of deionized water to promote the self-assembly. The results show that the pathway Ⅰ facilitates the coordination of BPy and Fe2+. With the increase of the concentration of Fe2+ aqueous solution, the coordination efficiency of BPy increases from 0.419 % to 7.789 %, leading to the transformation of BNPs to vesicles. Though the coordination efficiency of BPy also increases with the concentration of Fe2+ in pathway Ⅱ, which is still quite low of 0.274 % to 0.366 %, and the morphology of the BNPs barely changes. In addition, ethylene diamine tetraacetic acid (EDTA), a strong chelating agent, is also added to promote the competitive complexation with BPy, resulting in the dissociation of BPy and Fe2+ and the reversible transformation from vesicles to BNPs. Overall, the effect of Fe2+ coordination on the self-assembly behavior of PBPyAA in two pathways is investigated and the reversible transformation of BNPs to vesicles is also achieved.
期刊介绍:
European Polymer Journal is dedicated to publishing work on fundamental and applied polymer chemistry and macromolecular materials. The journal covers all aspects of polymer synthesis, including polymerization mechanisms and chemical functional transformations, with a focus on novel polymers and the relationships between molecular structure and polymer properties. In addition, we welcome submissions on bio-based or renewable polymers, stimuli-responsive systems and polymer bio-hybrids. European Polymer Journal also publishes research on the biomedical application of polymers, including drug delivery and regenerative medicine. The main scope is covered but not limited to the following core research areas:
Polymer synthesis and functionalization
• Novel synthetic routes for polymerization, functional modification, controlled/living polymerization and precision polymers.
Stimuli-responsive polymers
• Including shape memory and self-healing polymers.
Supramolecular polymers and self-assembly
• Molecular recognition and higher order polymer structures.
Renewable and sustainable polymers
• Bio-based, biodegradable and anti-microbial polymers and polymeric bio-nanocomposites.
Polymers at interfaces and surfaces
• Chemistry and engineering of surfaces with biological relevance, including patterning, antifouling polymers and polymers for membrane applications.
Biomedical applications and nanomedicine
• Polymers for regenerative medicine, drug delivery molecular release and gene therapy
The scope of European Polymer Journal no longer includes Polymer Physics.