Yin Ren , Lin He , Yunfei He , Yahong Wang , Sisi Li , Luming Zhou , Peng Ye , Rongli Gao , Gang Chen , Wei Cai , Chunlin Fu
{"title":"The key role of anti-solvent temperature in quantum dot/perovskite core-shell nanowire array solar cells","authors":"Yin Ren , Lin He , Yunfei He , Yahong Wang , Sisi Li , Luming Zhou , Peng Ye , Rongli Gao , Gang Chen , Wei Cai , Chunlin Fu","doi":"10.1016/j.physe.2024.116131","DOIUrl":null,"url":null,"abstract":"<div><div>Combining perovskite with infrared quantum dots to construct a core-shell nanostructure nanowire array solar cell can increase the light absorption range and enhance the light absorption and carrier transport efficiency of the solar cell. However, the preparation of a perovskite absorber layer on a nanowire array with quantum dots often presents issues such as high roughness and a large number of lattice defects, which have a negative impact on the photovoltaic performance. The anti-solvent method is a commonly used technique to improve the quality of perovskite. The temperature variation of the anti-solvent can change solubility, and influence the reaction rate and crystal formation process of perovskite, thus affecting its photovoltaic performance. In this study, the quality of perovskite in the core-shell nanostructure nanowire array was improved by controlling the temperature of the anti-solvent (toluene). Experimental results show that as the temperature of toluene increases, the photovoltaic performance is gradually improved. When the toluene temperature was maintained at 75 °C, the device exhibited significantly improved photovoltaic performance with an efficiency of 12.64 %, surpassing the efficiency obtained without any anti-solvent modification. As the temperature of the anti-solvent increases, the absorption of visible and near-infrared light spectrum by the nanowire arrays is enhanced, which promotes the efficient generation of photo-generated carriers. Furthermore, defects in the nanowire arrays gradually decrease, leading to a reduction in carrier recombination. These findings provide valuable insights for advancing core-shell nanostructure nanowire array solar cells.</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"165 ","pages":"Article 116131"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica E-low-dimensional Systems & Nanostructures","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386947724002352","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Combining perovskite with infrared quantum dots to construct a core-shell nanostructure nanowire array solar cell can increase the light absorption range and enhance the light absorption and carrier transport efficiency of the solar cell. However, the preparation of a perovskite absorber layer on a nanowire array with quantum dots often presents issues such as high roughness and a large number of lattice defects, which have a negative impact on the photovoltaic performance. The anti-solvent method is a commonly used technique to improve the quality of perovskite. The temperature variation of the anti-solvent can change solubility, and influence the reaction rate and crystal formation process of perovskite, thus affecting its photovoltaic performance. In this study, the quality of perovskite in the core-shell nanostructure nanowire array was improved by controlling the temperature of the anti-solvent (toluene). Experimental results show that as the temperature of toluene increases, the photovoltaic performance is gradually improved. When the toluene temperature was maintained at 75 °C, the device exhibited significantly improved photovoltaic performance with an efficiency of 12.64 %, surpassing the efficiency obtained without any anti-solvent modification. As the temperature of the anti-solvent increases, the absorption of visible and near-infrared light spectrum by the nanowire arrays is enhanced, which promotes the efficient generation of photo-generated carriers. Furthermore, defects in the nanowire arrays gradually decrease, leading to a reduction in carrier recombination. These findings provide valuable insights for advancing core-shell nanostructure nanowire array solar cells.
期刊介绍:
Physica E: Low-dimensional systems and nanostructures contains papers and invited review articles on the fundamental and applied aspects of physics in low-dimensional electron systems, in semiconductor heterostructures, oxide interfaces, quantum wells and superlattices, quantum wires and dots, novel quantum states of matter such as topological insulators, and Weyl semimetals.
Both theoretical and experimental contributions are invited. Topics suitable for publication in this journal include spin related phenomena, optical and transport properties, many-body effects, integer and fractional quantum Hall effects, quantum spin Hall effect, single electron effects and devices, Majorana fermions, and other novel phenomena.
Keywords:
• topological insulators/superconductors, majorana fermions, Wyel semimetals;
• quantum and neuromorphic computing/quantum information physics and devices based on low dimensional systems;
• layered superconductivity, low dimensional systems with superconducting proximity effect;
• 2D materials such as transition metal dichalcogenides;
• oxide heterostructures including ZnO, SrTiO3 etc;
• carbon nanostructures (graphene, carbon nanotubes, diamond NV center, etc.)
• quantum wells and superlattices;
• quantum Hall effect, quantum spin Hall effect, quantum anomalous Hall effect;
• optical- and phonons-related phenomena;
• magnetic-semiconductor structures;
• charge/spin-, magnon-, skyrmion-, Cooper pair- and majorana fermion- transport and tunneling;
• ultra-fast nonlinear optical phenomena;
• novel devices and applications (such as high performance sensor, solar cell, etc);
• novel growth and fabrication techniques for nanostructures