Multifunctional sericin-based biomineralized nanoplatforms with immunomodulatory and angio/osteo-genic activity for accelerated bone regeneration in periodontitis
Piaoye Ming , Bojiang Li , Qiumei Li , Lingling Yuan , Xueyu Jiang , Yunfei Liu , Rui Cai , Peirong Zhou , Xiaorong Lan , Gang Tao , Jingang Xiao
{"title":"Multifunctional sericin-based biomineralized nanoplatforms with immunomodulatory and angio/osteo-genic activity for accelerated bone regeneration in periodontitis","authors":"Piaoye Ming , Bojiang Li , Qiumei Li , Lingling Yuan , Xueyu Jiang , Yunfei Liu , Rui Cai , Peirong Zhou , Xiaorong Lan , Gang Tao , Jingang Xiao","doi":"10.1016/j.biomaterials.2024.122885","DOIUrl":null,"url":null,"abstract":"<div><div>Periodontitis is a chronic inflammation caused by dental plaque. It is characterized by the accumulation of excessive reactive oxygen species (ROS) and inflammatory mediators in the periodontal area. This affects the function of host cells, activates osteoclasts, and destroys periodontal tissue. Treatments such as local debridement or antibiotic therapy for ameliorating the overactive inflammatory microenvironment and repairing periodontal tissues are challenging. This paper reports multifunctional nanoplatforms (Se-CuSrHA@EGCG) based on sericin with ROS-scavenging, immunomodulatory, angiogenic, and osteogenic capabilities. The natural protein sericin, derived from silk cocoons, is used in water/oil emulsification and cross-linking processes to create sericin nanoparticles (Se NPs). Numerous binding sites are present on the surface of Se NPs. Ion-doped hydroxyapatite nanoparticles (Se-CuSrHA NPs) can be constructed using the force between positive and negative charges. After mineralization, an antioxidant coating is formed on the surface using polyethyleneimine (PEI)/epigallocatechin gallate (EGCG). Research conducted both <em>in vitro</em> and <em>in vivo</em> demonstrates that Se-CuSrHA@EGCG NPs can efficiently scavenge ROS, regulate macrophage polarization, increase the secretion of anti-inflammatory cytokines, and balance the immune microenvironment. In addition, Se-CuSrHA@EGCG stimulates angiogenesis, inhibits osteoclasts, and accelerates periodontal tissue repair. Therefore, this is a preferable strategy to accelerate bone regeneration in patients with periodontitis.</div></div>","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":"314 ","pages":"Article 122885"},"PeriodicalIF":12.8000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142961224004198","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Periodontitis is a chronic inflammation caused by dental plaque. It is characterized by the accumulation of excessive reactive oxygen species (ROS) and inflammatory mediators in the periodontal area. This affects the function of host cells, activates osteoclasts, and destroys periodontal tissue. Treatments such as local debridement or antibiotic therapy for ameliorating the overactive inflammatory microenvironment and repairing periodontal tissues are challenging. This paper reports multifunctional nanoplatforms (Se-CuSrHA@EGCG) based on sericin with ROS-scavenging, immunomodulatory, angiogenic, and osteogenic capabilities. The natural protein sericin, derived from silk cocoons, is used in water/oil emulsification and cross-linking processes to create sericin nanoparticles (Se NPs). Numerous binding sites are present on the surface of Se NPs. Ion-doped hydroxyapatite nanoparticles (Se-CuSrHA NPs) can be constructed using the force between positive and negative charges. After mineralization, an antioxidant coating is formed on the surface using polyethyleneimine (PEI)/epigallocatechin gallate (EGCG). Research conducted both in vitro and in vivo demonstrates that Se-CuSrHA@EGCG NPs can efficiently scavenge ROS, regulate macrophage polarization, increase the secretion of anti-inflammatory cytokines, and balance the immune microenvironment. In addition, Se-CuSrHA@EGCG stimulates angiogenesis, inhibits osteoclasts, and accelerates periodontal tissue repair. Therefore, this is a preferable strategy to accelerate bone regeneration in patients with periodontitis.
期刊介绍:
Biomaterials is an international journal covering the science and clinical application of biomaterials. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. The scope of the journal covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. These sciences include polymer synthesis and characterization, drug and gene vector design, the biology of the host response, immunology and toxicology and self assembly at the nanoscale. Clinical applications include the therapies of medical technology and regenerative medicine in all clinical disciplines, and diagnostic systems that reply on innovative contrast and sensing agents. The journal is relevant to areas such as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, bionanotechnology and tissue engineering.