Enhancing the sealing between titanium abutment and surrounding soft tissue is crucial for preventing peri-implantitis. Meanwhile, exploring non-invasive antibacterial strategies as alternatives for traditional antibiotic therapy is central to improving the effect of peri-implantitis treatment. Furthermore, facilitating effective integration between titanium implant and osteoporotic bone is the cornerstone for ensuring long-term implant stability in patients with osteoporosis. In light of this, this work innovatively constructed multifunctional vertical graphene-based coatings on titanium implants and abutments using plasma-enhanced chemical vapor deposition technology. The results demonstrated that the vertical graphene coatings promoted soft tissue sealing and exhibited inherent antibacterial activities with the bacteriostasis rates of 65.60 % against Staphylococcus aureus (S. aureus) and 43.89 % against Escherichia coli (E. coli) in vitro which could prevent early infections. Moreover, vertical graphene coatings presented photothermal antibacterial effects with the antibacterial rates of 99.99 % and 95.83 % for S. aureus in vitro and in vivo, respectively, and 92.23 % for E. coli in vitro under near-infrared irradiation, which provided a non-invasive and highly effective treatment option for peri-implantitis. Furthermore, teriparatide acetate was loaded on vertical graphene coatings which enhanced osseointegration between titanium implants and osteoporotic bone. By comprehensively considering the critical functional requirements of dental implants and abutments, this work meticulously designed vertical graphene-based coatings on titanium dental implant systems for soft and hard tissue integration. This innovative design demonstrates immense application potential, especially for dental implant restoration in patients with osteoporosis.