Joseph C. Perkins , Kyall R. Zenger , Yang Liu , Jan M. Strugnell
{"title":"Ciguatera poisoning: A review of the ecology and detection methods for Gambierdiscus and Fukuyoa species","authors":"Joseph C. Perkins , Kyall R. Zenger , Yang Liu , Jan M. Strugnell","doi":"10.1016/j.hal.2024.102735","DOIUrl":null,"url":null,"abstract":"<div><div>Ciguatera poisoning is the most prevalent non-bacterial seafood illness globally, with an estimated 10,000 to 50,000 human cases reported annually. While most symptoms are generally mild, some cases can result in severe and long-lasting neurological and psychological damage, and in some instances, even death. The known causative agents of ciguatera poisoning are benthic toxic dinoflagellate species belonging to the genera <em>Gambierdiscus</em> and <em>Fukuyoa</em>. These species produce highly potent ciguatoxins that bioaccumulate through the marine food chain, eventually reaching humans through seafood consumption. Although <em>Gambierdiscus</em> and <em>Fukuyoa</em> species are widespread in tropical waters worldwide, the full extent of their distribution remains uncertain. This review provides a detailed examination of the ecological dynamics of these dinoflagellates and explores the diverse range of detection methods used to monitor them. These include a focus on molecular techniques for detection, alongside morphological methods, emerging technologies, and a toxin detection overview. Additionally, we offer recommendations on how the field can advance, highlighting novel solutions and next steps for improving detection and monitoring practices. By assessing the strengths and limitations of current approaches and proposing directions for future research, this review aims to support efforts in better understanding and mitigating the risk of ciguatera poisoning.</div></div>","PeriodicalId":12897,"journal":{"name":"Harmful Algae","volume":"139 ","pages":"Article 102735"},"PeriodicalIF":5.5000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Harmful Algae","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568988324001689","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ciguatera poisoning is the most prevalent non-bacterial seafood illness globally, with an estimated 10,000 to 50,000 human cases reported annually. While most symptoms are generally mild, some cases can result in severe and long-lasting neurological and psychological damage, and in some instances, even death. The known causative agents of ciguatera poisoning are benthic toxic dinoflagellate species belonging to the genera Gambierdiscus and Fukuyoa. These species produce highly potent ciguatoxins that bioaccumulate through the marine food chain, eventually reaching humans through seafood consumption. Although Gambierdiscus and Fukuyoa species are widespread in tropical waters worldwide, the full extent of their distribution remains uncertain. This review provides a detailed examination of the ecological dynamics of these dinoflagellates and explores the diverse range of detection methods used to monitor them. These include a focus on molecular techniques for detection, alongside morphological methods, emerging technologies, and a toxin detection overview. Additionally, we offer recommendations on how the field can advance, highlighting novel solutions and next steps for improving detection and monitoring practices. By assessing the strengths and limitations of current approaches and proposing directions for future research, this review aims to support efforts in better understanding and mitigating the risk of ciguatera poisoning.
期刊介绍:
This journal provides a forum to promote knowledge of harmful microalgae and macroalgae, including cyanobacteria, as well as monitoring, management and control of these organisms.