Mechanical behavior of bio-based concrete under various loadings and factors affecting its mechanical properties at the composite scale: A state-of-the-art review
{"title":"Mechanical behavior of bio-based concrete under various loadings and factors affecting its mechanical properties at the composite scale: A state-of-the-art review","authors":"Rafik Bardouh , Evelyne Toussaint , Sofiane Amziane , Sandrine Marceau","doi":"10.1016/j.clet.2024.100819","DOIUrl":null,"url":null,"abstract":"<div><div>The utilization of environmentally friendly materials derived from agricultural sources is becoming more prevalent in the construction industry. Many studies have already been conducted on various agro-resources, providing a variety of information on the characteristics of botanical aggregates and bio-based concrete. However, the prediction of the mechanical behavior of bio-based concrete remains complex owing to the various factors that influence its properties. Hence, it is crucial to collect a multitude of diverse information scattered throughout the literature regarding the mechanical response of bio-based materials under different loading conditions.</div><div>This paper review aims to evaluate the mechanical behavior law and mechanical properties of bio-based concrete under various loadings (compression, flexion, and shear) in accordance with multi-plant-aggregates and different mineral binders. The literature has provided around 120 papers listing a compilation of 18 plant aggregates sourced from various origins that are utilized in plant-based concrete. On the other side, a few types of aggregates and binders were introduced in the literature regarding the mechanical behavior of bio-based concrete. Several factors can affect the mechanical properties of bio-based concrete at the composite scale such as the formulation, the casting process (energy), the curing conditions, the morphology of the aggregates, the density, the porosity, the mineral matrix properties, and particles/binder physicochemical interactions. Hence, this paper elaborates on a conceptual understanding that focuses on the mechanical response of bio-based concrete in relation to the various influencing factors up to the application of these materials in building sector.</div></div>","PeriodicalId":34618,"journal":{"name":"Cleaner Engineering and Technology","volume":"23 ","pages":"Article 100819"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666790824000995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The utilization of environmentally friendly materials derived from agricultural sources is becoming more prevalent in the construction industry. Many studies have already been conducted on various agro-resources, providing a variety of information on the characteristics of botanical aggregates and bio-based concrete. However, the prediction of the mechanical behavior of bio-based concrete remains complex owing to the various factors that influence its properties. Hence, it is crucial to collect a multitude of diverse information scattered throughout the literature regarding the mechanical response of bio-based materials under different loading conditions.
This paper review aims to evaluate the mechanical behavior law and mechanical properties of bio-based concrete under various loadings (compression, flexion, and shear) in accordance with multi-plant-aggregates and different mineral binders. The literature has provided around 120 papers listing a compilation of 18 plant aggregates sourced from various origins that are utilized in plant-based concrete. On the other side, a few types of aggregates and binders were introduced in the literature regarding the mechanical behavior of bio-based concrete. Several factors can affect the mechanical properties of bio-based concrete at the composite scale such as the formulation, the casting process (energy), the curing conditions, the morphology of the aggregates, the density, the porosity, the mineral matrix properties, and particles/binder physicochemical interactions. Hence, this paper elaborates on a conceptual understanding that focuses on the mechanical response of bio-based concrete in relation to the various influencing factors up to the application of these materials in building sector.