Cutting speed and behaviors of ice using Yb-doped fiber laser

IF 3.8 2区 工程技术 Q1 ENGINEERING, CIVIL Cold Regions Science and Technology Pub Date : 2024-10-05 DOI:10.1016/j.coldregions.2024.104335
{"title":"Cutting speed and behaviors of ice using Yb-doped fiber laser","authors":"","doi":"10.1016/j.coldregions.2024.104335","DOIUrl":null,"url":null,"abstract":"<div><div>The use of a laser to cut or drill ice has been proposed and demonstrated multiple times in previous decades as a novel, but never adopted, machining tool in glaciology and paleoclimate studies. However, with the rapid development of high power fiber-laser technology over the past few decades, it is timely to perform further studies using this new tool. An investigation is made herein on the cutting of ice using a Yb-doped fiber laser emitting at a wavelength of 1070 nm, the most extensively developed and highest power fiber laser technology, in pulsed and continuous-wave operation. Visible-light observations of clear tap water ice samples, moving at a constant velocity relative to a pulsed laser beam, demonstrate a linear relationship between the duration of a millisecond-range laser pulse and the depth of the meltwater-free cut formed in response. Thermal imaging of the irradiated face shows that peripheral heating trends linearly for pulse lengths greater than 5 ms. A comparison of pulse trains with a constant time-averaged power suggests that shorter pulses are advantageous in slot-cutting efficiency and in minimizing visible alterations in the surrounding ice. These results demonstrate the viability of powerful fiber-compatible lasers as a tool for ice sample retrieval and processing.</div></div>","PeriodicalId":10522,"journal":{"name":"Cold Regions Science and Technology","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Regions Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165232X24002167","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

The use of a laser to cut or drill ice has been proposed and demonstrated multiple times in previous decades as a novel, but never adopted, machining tool in glaciology and paleoclimate studies. However, with the rapid development of high power fiber-laser technology over the past few decades, it is timely to perform further studies using this new tool. An investigation is made herein on the cutting of ice using a Yb-doped fiber laser emitting at a wavelength of 1070 nm, the most extensively developed and highest power fiber laser technology, in pulsed and continuous-wave operation. Visible-light observations of clear tap water ice samples, moving at a constant velocity relative to a pulsed laser beam, demonstrate a linear relationship between the duration of a millisecond-range laser pulse and the depth of the meltwater-free cut formed in response. Thermal imaging of the irradiated face shows that peripheral heating trends linearly for pulse lengths greater than 5 ms. A comparison of pulse trains with a constant time-averaged power suggests that shorter pulses are advantageous in slot-cutting efficiency and in minimizing visible alterations in the surrounding ice. These results demonstrate the viability of powerful fiber-compatible lasers as a tool for ice sample retrieval and processing.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用掺镱光纤激光器切割冰的速度和行为
在过去的几十年中,使用激光切割或钻孔冰作为一种新颖的加工工具在冰川学和古气候研究中被多次提出和论证,但从未被采用。然而,随着高功率光纤激光技术在过去几十年的快速发展,现在是利用这种新工具开展进一步研究的时候了。本文对使用波长为 1070 纳米的掺镱光纤激光器切割冰层的情况进行了研究,该激光器是目前开发最广泛、功率最大的光纤激光器技术,可进行脉冲和连续波操作。对相对于脉冲激光束匀速运动的透明自来水冰样品进行的可见光观察表明,毫秒级激光脉冲的持续时间与响应形成的无融水切割深度之间存在线性关系。照射面的热成像显示,当脉冲长度大于 5 毫秒时,外围加热呈线性趋势。对具有恒定时间平均功率的脉冲序列进行的比较表明,较短的脉冲在切槽效率和最大限度地减少周围冰层的可见变化方面具有优势。这些结果表明,功能强大的光纤兼容激光器可作为冰样品回收和处理的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cold Regions Science and Technology
Cold Regions Science and Technology 工程技术-地球科学综合
CiteScore
7.40
自引率
12.20%
发文量
209
审稿时长
4.9 months
期刊介绍: Cold Regions Science and Technology is an international journal dealing with the science and technical problems of cold environments in both the polar regions and more temperate locations. It includes fundamental aspects of cryospheric sciences which have applications for cold regions problems as well as engineering topics which relate to the cryosphere. Emphasis is given to applied science with broad coverage of the physical and mechanical aspects of ice (including glaciers and sea ice), snow and snow avalanches, ice-water systems, ice-bonded soils and permafrost. Relevant aspects of Earth science, materials science, offshore and river ice engineering are also of primary interest. These include icing of ships and structures as well as trafficability in cold environments. Technological advances for cold regions in research, development, and engineering practice are relevant to the journal. Theoretical papers must include a detailed discussion of the potential application of the theory to address cold regions problems. The journal serves a wide range of specialists, providing a medium for interdisciplinary communication and a convenient source of reference.
期刊最新文献
Editorial Board Prototype observation and analysis of static ice pressure on reservoir piers in cold regions Relationship of physical and mechanical properties of sea ice during the freeze-up season in Nansen Basin New insights into icephobic material assessment: Introducing the human motion–inspired automated apparatus (HMA) Mesoscopic shear evolution characteristics of frozen soil-concrete interface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1