{"title":"Advancements of biomaterial in hip replacement technology incorporating ceramic materials","authors":"Zhijun Li","doi":"10.1016/j.jor.2024.09.021","DOIUrl":null,"url":null,"abstract":"<div><div>The increasing prevalence of hip joint diseases is closely linked to improved living standards and an aging population, leading to a rise in conditions like degenerative arthritis and severe hip injuries. These conditions cause significant pain and functional impairments, greatly reducing the quality of life for affected individuals. Total hip arthroplasty (THA) has become a well-established surgical intervention to address these debilitating conditions. Within the realm of hip replacement materials, ceramics have garnered attention for their exceptional wear resistance and ability to minimize complications, such as bone dissolution caused by wear particles. Ceramics, such as alumina and zirconia, offer biocompatibility and low wear rates, making them favourable choices for hip prostheses. However, despite these advantages, the use of ceramics in hip replacements is not without challenges. Issues such as ceramic fragmentation and abnormal joint noise have been noted, posing significant obstacles to their widespread adoption. This review explores the advancements in hip replacement technology with a particular focus on ceramic materials. It delves into the properties that make ceramics suitable for this application, such as their biocompatibility and mechanical strength, enhanced through advanced manufacturing techniques. Additionally, the review addresses the ongoing challenges, including strategies to mitigate the risk of fragmentation through material toughening and improved prosthesis design. Furthermore, it examines the phenomenon of abnormal joint noise, proposing solutions that involve refinements in implant design, surgical techniques, and post-operative patient management. The aim of this review is to provide a comprehensive overview of current advancements and future directions in the use of ceramic materials in hip replacement technology, highlighting the potential for improved patient outcomes and the need for continued research and innovation in this field.</div></div>","PeriodicalId":16633,"journal":{"name":"Journal of orthopaedics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of orthopaedics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0972978X24003283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing prevalence of hip joint diseases is closely linked to improved living standards and an aging population, leading to a rise in conditions like degenerative arthritis and severe hip injuries. These conditions cause significant pain and functional impairments, greatly reducing the quality of life for affected individuals. Total hip arthroplasty (THA) has become a well-established surgical intervention to address these debilitating conditions. Within the realm of hip replacement materials, ceramics have garnered attention for their exceptional wear resistance and ability to minimize complications, such as bone dissolution caused by wear particles. Ceramics, such as alumina and zirconia, offer biocompatibility and low wear rates, making them favourable choices for hip prostheses. However, despite these advantages, the use of ceramics in hip replacements is not without challenges. Issues such as ceramic fragmentation and abnormal joint noise have been noted, posing significant obstacles to their widespread adoption. This review explores the advancements in hip replacement technology with a particular focus on ceramic materials. It delves into the properties that make ceramics suitable for this application, such as their biocompatibility and mechanical strength, enhanced through advanced manufacturing techniques. Additionally, the review addresses the ongoing challenges, including strategies to mitigate the risk of fragmentation through material toughening and improved prosthesis design. Furthermore, it examines the phenomenon of abnormal joint noise, proposing solutions that involve refinements in implant design, surgical techniques, and post-operative patient management. The aim of this review is to provide a comprehensive overview of current advancements and future directions in the use of ceramic materials in hip replacement technology, highlighting the potential for improved patient outcomes and the need for continued research and innovation in this field.
期刊介绍:
Journal of Orthopaedics aims to be a leading journal in orthopaedics and contribute towards the improvement of quality of orthopedic health care. The journal publishes original research work and review articles related to different aspects of orthopaedics including Arthroplasty, Arthroscopy, Sports Medicine, Trauma, Spine and Spinal deformities, Pediatric orthopaedics, limb reconstruction procedures, hand surgery, and orthopaedic oncology. It also publishes articles on continuing education, health-related information, case reports and letters to the editor. It is requested to note that the journal has an international readership and all submissions should be aimed at specifying something about the setting in which the work was conducted. Authors must also provide any specific reasons for the research and also provide an elaborate description of the results.