Thaís Fabiana Chan Salum , Daniel Day , James Sherwood , Alessandro Pellis , Thomas James Farmer
{"title":"Enzymatic synthesis of aromatic biobased polymers in green, low-boiling solvents","authors":"Thaís Fabiana Chan Salum , Daniel Day , James Sherwood , Alessandro Pellis , Thomas James Farmer","doi":"10.1016/j.jbiotec.2024.10.003","DOIUrl":null,"url":null,"abstract":"<div><div>Given the urge to accelerate the substitution of petrol-derived solvents not only in more traditional fields like pharmaceuticals, personal care, or electronics but also in innovative research processes, this work focuses on the utilisation of four biobased solvents as media for the enzymatic synthesis of aliphatic-aromatic polyesters. As building blocks, the lignin-derived diethyl-2,4-pyridinedicarboxylate was selected as the potentially biobased, aromatic component while more classical diols such as 1,4-butanediol and 1,8-octanediol were used as the aliphatic portion. Results show that among the tested green solvents (cyclohexanone, phenetole, anisole and eucalyptol), the most suitable medium for lipase B from <em>Candida antarctica</em>-catalysed polycondensation reactions was eucalyptol that allowed reach monomer conversions >95 % and number average molecular weights up to 3500 g·mol<sup>−1</sup>. On the other hand, cyclohexanone led to the lowest monomer conversions (<80 %) and molecular weights (M<sub>n</sub><500 g·mol<sup>−1</sup>) confirming once again the unsuitability of ketone-containing solvents for enzymatic esterification and transesterification reactions. The lipase could be used up to three times, in eucalyptol as a solvent, without a significant decrease in monomer conversion or molecular weight.</div></div>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":"396 ","pages":"Pages 1-9"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168165624002669","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Given the urge to accelerate the substitution of petrol-derived solvents not only in more traditional fields like pharmaceuticals, personal care, or electronics but also in innovative research processes, this work focuses on the utilisation of four biobased solvents as media for the enzymatic synthesis of aliphatic-aromatic polyesters. As building blocks, the lignin-derived diethyl-2,4-pyridinedicarboxylate was selected as the potentially biobased, aromatic component while more classical diols such as 1,4-butanediol and 1,8-octanediol were used as the aliphatic portion. Results show that among the tested green solvents (cyclohexanone, phenetole, anisole and eucalyptol), the most suitable medium for lipase B from Candida antarctica-catalysed polycondensation reactions was eucalyptol that allowed reach monomer conversions >95 % and number average molecular weights up to 3500 g·mol−1. On the other hand, cyclohexanone led to the lowest monomer conversions (<80 %) and molecular weights (Mn<500 g·mol−1) confirming once again the unsuitability of ketone-containing solvents for enzymatic esterification and transesterification reactions. The lipase could be used up to three times, in eucalyptol as a solvent, without a significant decrease in monomer conversion or molecular weight.
期刊介绍:
The Journal of Biotechnology has an open access mirror journal, the Journal of Biotechnology: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
The Journal provides a medium for the rapid publication of both full-length articles and short communications on novel and innovative aspects of biotechnology. The Journal will accept papers ranging from genetic or molecular biological positions to those covering biochemical, chemical or bioprocess engineering aspects as well as computer application of new software concepts, provided that in each case the material is directly relevant to biotechnological systems. Papers presenting information of a multidisciplinary nature that would not be suitable for publication in a journal devoted to a single discipline, are particularly welcome.