Negativizability for Nonlinear Estimation in Cyber–Physical Systems

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS IEEE Control Systems Letters Pub Date : 2024-10-07 DOI:10.1109/LCSYS.2024.3473789
Camilla Fioravanti;Stefano Panzieri;Gabriele Oliva
{"title":"Negativizability for Nonlinear Estimation in Cyber–Physical Systems","authors":"Camilla Fioravanti;Stefano Panzieri;Gabriele Oliva","doi":"10.1109/LCSYS.2024.3473789","DOIUrl":null,"url":null,"abstract":"This letter introduces a novel fully distributed estimation scheme for nonlinear continuous-time dynamics over directed and strongly connected graphs. Leveraging on the assumption of local negativizability, the proposed approach performs the estimation of the interdependent subsystems of a cyber-physical system, despite the presence of nonlinear dependencies on the dynamics. This transforms the intricate task of nonlinear state estimation by each agent into more manageable local negativizability problems for the design of the estimation gains. A pivotal aspect of the approach is that each agent should be aware of an upper bound on the Lipschitz constant of the overall nonlinear function that characterizes the dynamics. To face this issue, we developed a novel distributed methodology for the estimation of the global Lipschitz constant, starting from the local observations of the system’s nonlinearities. The effectiveness of the proposed scheme is numerically demonstrated through simulations.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10706085","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10706085/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This letter introduces a novel fully distributed estimation scheme for nonlinear continuous-time dynamics over directed and strongly connected graphs. Leveraging on the assumption of local negativizability, the proposed approach performs the estimation of the interdependent subsystems of a cyber-physical system, despite the presence of nonlinear dependencies on the dynamics. This transforms the intricate task of nonlinear state estimation by each agent into more manageable local negativizability problems for the design of the estimation gains. A pivotal aspect of the approach is that each agent should be aware of an upper bound on the Lipschitz constant of the overall nonlinear function that characterizes the dynamics. To face this issue, we developed a novel distributed methodology for the estimation of the global Lipschitz constant, starting from the local observations of the system’s nonlinearities. The effectiveness of the proposed scheme is numerically demonstrated through simulations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
网络物理系统中非线性估计的可否定性
这封信介绍了一种新颖的全分布式有向强连接图非线性连续时间动力学估算方案。利用局部可否定性假设,尽管动态存在非线性依赖性,所提出的方法仍能对网络物理系统中相互依赖的子系统进行估计。这就将每个代理进行非线性状态估计的复杂任务转化为更易于管理的局部可否定性问题,以便设计估计增益。该方法的一个关键方面是,每个代理都应了解表征动态特性的整体非线性函数的 Lipschitz 常量的上限。面对这一问题,我们开发了一种新颖的分布式方法,从系统非线性的局部观测出发,估计全局的 Lipschitz 常数。我们通过模拟数值证明了所提方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
期刊最新文献
Rationality of Learning Algorithms in Repeated Normal-Form Games Impact of Opinion on Disease Transmission With Waterborne Pathogen and Stubborn Community Numerical and Lyapunov-Based Investigation of the Effect of Stenosis on Blood Transport Stability Using a Control-Theoretic PDE Model of Cardiovascular Flow Almost Sure Convergence and Non-Asymptotic Concentration Bounds for Stochastic Mirror Descent Algorithm Opinion Dynamics With Set-Based Confidence: Convergence Criteria and Periodic Solutions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1