Efficient Approach to Rank Performance of Magnetic Colloids for Magnetic Particle Imaging and Magnetic Particle Hyperthermia

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2024-10-18 DOI:10.1002/adfm.202412321
Hayden Carlton, Marzieh Salimi, Nageshwar Arepally, Gabriela Bentolila, Anirudh Sharma, Adnan Bibic, Matt Newgren, Patrick Goodwill, Anilchandra Attaluri, Preethi Korangath, Jeff W.M. Bulte, Robert Ivkov
{"title":"Efficient Approach to Rank Performance of Magnetic Colloids for Magnetic Particle Imaging and Magnetic Particle Hyperthermia","authors":"Hayden Carlton, Marzieh Salimi, Nageshwar Arepally, Gabriela Bentolila, Anirudh Sharma, Adnan Bibic, Matt Newgren, Patrick Goodwill, Anilchandra Attaluri, Preethi Korangath, Jeff W.M. Bulte, Robert Ivkov","doi":"10.1002/adfm.202412321","DOIUrl":null,"url":null,"abstract":"Magnetic particle imaging (MPI) is an emerging modality that can address longstanding technological challenges encountered with magnetic particle hyperthermia (MPH) cancer therapy. MPI is a tracer technology compatible with MPH for which magnetic nanoparticles (MNPs) provide signal for MPI and heat for MPH. Identifying whether a specific MNP formulation is suitable for both modalities is essential for clinical implementation. Current models predict that functional requirements of each modality impose conflicting demands on nanoparticle magnetic properties. This objective here is to develop a measurement and ranking scheme based on end-use performance to streamline evaluation of candidate MNP formulations. The measured MPI point-spread function (PSF) and specific loss power (SLP) is combined to generate a single numerical value for comparison on a relative ranking scale, or figure of merit (FoM). 12 aqueous iron-containing formulations are evaluated, including FDA-approved (parenteral) iron-containing colloids. MNPs with high (Synomag-D70: 123.4), medium (Synomag-D50: 63.2), and low (NanoXact: 0.147) FoM values are selected for in vivo validation of the selection scheme in subcutaneous 4T1 tumors. Results demonstrate that the proposed ranking accurately assessed the relative performance of MNPs for MPI and MPH. Data demonstrated that image quality and tumor temperature rise increased with FoM ranking, validating predictions. It isshown that the MPI signal correlated with MNP concentration in tissue. Computational heat transfer models anchored on tumor MPI data harmonized with experimental results to within an average of 2 °C when MNP content estimated from MPI data is included. Computational studies emphasized the importance of post-injection MNP quantitation and MPI spatial resolution.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202412321","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Magnetic particle imaging (MPI) is an emerging modality that can address longstanding technological challenges encountered with magnetic particle hyperthermia (MPH) cancer therapy. MPI is a tracer technology compatible with MPH for which magnetic nanoparticles (MNPs) provide signal for MPI and heat for MPH. Identifying whether a specific MNP formulation is suitable for both modalities is essential for clinical implementation. Current models predict that functional requirements of each modality impose conflicting demands on nanoparticle magnetic properties. This objective here is to develop a measurement and ranking scheme based on end-use performance to streamline evaluation of candidate MNP formulations. The measured MPI point-spread function (PSF) and specific loss power (SLP) is combined to generate a single numerical value for comparison on a relative ranking scale, or figure of merit (FoM). 12 aqueous iron-containing formulations are evaluated, including FDA-approved (parenteral) iron-containing colloids. MNPs with high (Synomag-D70: 123.4), medium (Synomag-D50: 63.2), and low (NanoXact: 0.147) FoM values are selected for in vivo validation of the selection scheme in subcutaneous 4T1 tumors. Results demonstrate that the proposed ranking accurately assessed the relative performance of MNPs for MPI and MPH. Data demonstrated that image quality and tumor temperature rise increased with FoM ranking, validating predictions. It isshown that the MPI signal correlated with MNP concentration in tissue. Computational heat transfer models anchored on tumor MPI data harmonized with experimental results to within an average of 2 °C when MNP content estimated from MPI data is included. Computational studies emphasized the importance of post-injection MNP quantitation and MPI spatial resolution.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
为磁粒子成像和磁粒子热疗对磁胶体性能进行分级的有效方法
磁粉成像(MPI)是一种新兴模式,可以解决磁粉热疗(MPH)癌症疗法长期以来遇到的技术难题。MPI 是一种与 MPH 兼容的示踪技术,磁性纳米粒子 (MNP) 为 MPI 提供信号,为 MPH 提供热量。确定特定的 MNP 配方是否适合这两种模式对于临床应用至关重要。目前的模型预测,每种模式的功能要求都会对纳米粒子的磁性能提出相互冲突的要求。本文旨在开发一种基于最终使用性能的测量和排序方案,以简化对候选 MNP 配方的评估。测得的 MPI 点扩散函数 (PSF) 和比损耗功率 (SLP) 将结合起来,生成一个单一的数值,用于在相对排名表或优点值 (FoM) 上进行比较。对 12 种含铁水性制剂进行了评估,其中包括美国食品及药物管理局批准的(肠外)含铁胶体。选择了FoM值高(Synomag-D70:123.4)、中(Synomag-D50:63.2)和低(NanoXact:0.147)的MNPs,在皮下4T1肿瘤中对选择方案进行体内验证。结果表明,所提出的排序能准确评估 MNPs 在 MPI 和 MPH 中的相对性能。数据表明,图像质量和肿瘤温升随着 FoM 值的排序而增加,验证了预测结果。数据显示,MPI 信号与组织中的 MNP 浓度相关。以肿瘤 MPI 数据为基础的计算热传导模型与实验结果相吻合,当包括从 MPI 数据估算出的 MNP 含量时,两者的平均值在 2 °C 以内。计算研究强调了注射后 MNP 定量和 MPI 空间分辨率的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Br-Induced d-Band Regulation on Superhydrophilic Isostructural Cobalt Phosphide for Efficient Overall Water Splitting Efficient Approach to Rank Performance of Magnetic Colloids for Magnetic Particle Imaging and Magnetic Particle Hyperthermia Aptamer-Directed Bidirectional Modulation of Vascular Niches for Promoted Regeneration of Segmental Trachea Defect MBene Nanosheets with DNA Adsorbability for Circulating Tumor DNA Assay via Fluorescence Biosensing and Paper-Based Microfluidic POCT Innovative Materials for Lamination Encapsulation in Perovskite Solar Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1