{"title":"Mechanistic exploration of the exceptional corrosion resistance of the newly designed FeCoCrNiMoxNbx high-entropy alloys","authors":"Jiaming Duan, Zhineng Jiang, Feng Huang, Xian Zhang, Guoan Zhang","doi":"10.1016/j.jmst.2024.10.001","DOIUrl":null,"url":null,"abstract":"Corrosion would lead to the failure of materials during service, causing huge economic losses and catastrophic accidents, particularly in chemical industries. In this work, a series of novel high-entropy alloys (HEAs) (FeCoCrNiMo<em><sub>x</sub></em>Nb<em><sub>x</sub></em>) with exceptional corrosion resistance were designed. The phase composition, corrosion resistance, and passive film properties were determined through micro-characterization and electrochemical tests. First-principles calculations were further performed to unveil the corrosion resistance mechanism at the atomic level, especially the influence of elements on the corrosion resistance. It is found that the appropriate increase in the contents of Mo/Nb elements leads to the increased Laves phase in the HEAs and enhances the corrosion resistance of the HEAs. However, the excessive addition of Mo/Nb elements will cause more severe microgalvanic corrosion between FCC and Laves phases, resulting in a decrease in corrosion resistance. Theoretical calculations demonstrate that the Laves phase is more resistant to the attack of corrosive species. Additionally, the presences of Mo, Nb, and Cr elements in the HEAs facilitate the adsorption of H<sub>2</sub>O/O on the HEAs surface, which promotes the formation of a protective passive film, and then provides better protection for the HEAs.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"1 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.10.001","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Corrosion would lead to the failure of materials during service, causing huge economic losses and catastrophic accidents, particularly in chemical industries. In this work, a series of novel high-entropy alloys (HEAs) (FeCoCrNiMoxNbx) with exceptional corrosion resistance were designed. The phase composition, corrosion resistance, and passive film properties were determined through micro-characterization and electrochemical tests. First-principles calculations were further performed to unveil the corrosion resistance mechanism at the atomic level, especially the influence of elements on the corrosion resistance. It is found that the appropriate increase in the contents of Mo/Nb elements leads to the increased Laves phase in the HEAs and enhances the corrosion resistance of the HEAs. However, the excessive addition of Mo/Nb elements will cause more severe microgalvanic corrosion between FCC and Laves phases, resulting in a decrease in corrosion resistance. Theoretical calculations demonstrate that the Laves phase is more resistant to the attack of corrosive species. Additionally, the presences of Mo, Nb, and Cr elements in the HEAs facilitate the adsorption of H2O/O on the HEAs surface, which promotes the formation of a protective passive film, and then provides better protection for the HEAs.
期刊介绍:
Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.