{"title":"Joint Variational Modal Decomposition for Specific Emitter Identification With Multiple Sensors","authors":"Xiaofang Chen;Xue Fu;Wenbo Xu;Yue Wang;Guan Gui","doi":"10.1109/TIFS.2024.3482861","DOIUrl":null,"url":null,"abstract":"Specific emitter identification (SEI) is important to guarantee the security of device administration. Recently, to increase the effectiveness of the recognition, traditional SEI employing only one sensor has been extended to the scenario with multiple sensors. However, the inherent distortion at different sensors impacts the radio frequency fingerprints (RFFs) of the emitter independently, which inevitably leads to the non-universalization of the features extracted at different sensors. Besides, variational modal decomposition (VMD), which is an effective preprocessing in SEI, has not been well investigated in noisy scenarios. To combat the environment noise, this paper proposes two joint VMD (JVMD) algorithms, i.e., JVMD for ignoring the distortions at sensors (I-JVMD) and JVMD for considering the distortions at sensors (C-JVMD). Specifically, I-JVMD exploits the consistency of the central frequencies and intrinsic modal functions (IMFs) of multiple sensors, and C-JVMD further estimates and filters out the phase noise at each sensor that may distort the RFFs of the emitter. Simulations of the proposed JVMD algorithms and their corresponding applications in SEI are provided on two real-world datasets. When compared with the traditional VMD, the proposed ones improve the accuracy of device classification and the robustness towards noise.","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"19 ","pages":"9938-9953"},"PeriodicalIF":6.3000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Forensics and Security","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10720858/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Specific emitter identification (SEI) is important to guarantee the security of device administration. Recently, to increase the effectiveness of the recognition, traditional SEI employing only one sensor has been extended to the scenario with multiple sensors. However, the inherent distortion at different sensors impacts the radio frequency fingerprints (RFFs) of the emitter independently, which inevitably leads to the non-universalization of the features extracted at different sensors. Besides, variational modal decomposition (VMD), which is an effective preprocessing in SEI, has not been well investigated in noisy scenarios. To combat the environment noise, this paper proposes two joint VMD (JVMD) algorithms, i.e., JVMD for ignoring the distortions at sensors (I-JVMD) and JVMD for considering the distortions at sensors (C-JVMD). Specifically, I-JVMD exploits the consistency of the central frequencies and intrinsic modal functions (IMFs) of multiple sensors, and C-JVMD further estimates and filters out the phase noise at each sensor that may distort the RFFs of the emitter. Simulations of the proposed JVMD algorithms and their corresponding applications in SEI are provided on two real-world datasets. When compared with the traditional VMD, the proposed ones improve the accuracy of device classification and the robustness towards noise.
期刊介绍:
The IEEE Transactions on Information Forensics and Security covers the sciences, technologies, and applications relating to information forensics, information security, biometrics, surveillance and systems applications that incorporate these features