Global Freight Transport Emissions Responsibility

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL 环境科学与技术 Pub Date : 2024-10-18 DOI:10.1021/acs.est.4c05658
Jacob Fry, Keiichiro Kanemoto, Alastair Fraser, Keisuke Nansai
{"title":"Global Freight Transport Emissions Responsibility","authors":"Jacob Fry, Keiichiro Kanemoto, Alastair Fraser, Keisuke Nansai","doi":"10.1021/acs.est.4c05658","DOIUrl":null,"url":null,"abstract":"The transportation of freight by land, sea and air underpins the complex network of global trade in physical commodities. Greenhouse gas emissions from freight transportation are a significant component of global emissions and are predicted to grow in coming decades. However, the inclusion of freight transport in emissions accounts and environmental impact studies is often incomplete. Both data availability and difficulties in allocating freight emissions to specific commodity trades contributes to this. In this study, international freight movements by transport mode are estimated from the bottom-up by imputing global freight transport routes. Emissions are estimated from these freight movements and integrated with a global multiregional input–output model. This enables the calculation of carbon footprints that are complete with respect to freight emissions. We estimate that global freight transport emissions contributed 2.8 Gt CO<sub>2</sub>-equiv in 2012, or about 41% of total transport emissions. In general, freight footprints contribute about 9% to national emissions footprints. While trade in physical commodities (such as construction materials, food and fossil fuels) are associated with the largest embodied freight emissions, services (such as public administration, education and health) also require significant freight transport. Using a consumption-based allocation of freight transport emissions allows the decarbonisation of other sectors to be complementary to the decarbonisation of transport through reduction in demand, for example through material efficiency strategies. To drive decarbonisation in maritime transport it is critical to include bunker emissions in national emissions inventories, thereby completing the system boundary.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":null,"pages":null},"PeriodicalIF":10.8000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c05658","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The transportation of freight by land, sea and air underpins the complex network of global trade in physical commodities. Greenhouse gas emissions from freight transportation are a significant component of global emissions and are predicted to grow in coming decades. However, the inclusion of freight transport in emissions accounts and environmental impact studies is often incomplete. Both data availability and difficulties in allocating freight emissions to specific commodity trades contributes to this. In this study, international freight movements by transport mode are estimated from the bottom-up by imputing global freight transport routes. Emissions are estimated from these freight movements and integrated with a global multiregional input–output model. This enables the calculation of carbon footprints that are complete with respect to freight emissions. We estimate that global freight transport emissions contributed 2.8 Gt CO2-equiv in 2012, or about 41% of total transport emissions. In general, freight footprints contribute about 9% to national emissions footprints. While trade in physical commodities (such as construction materials, food and fossil fuels) are associated with the largest embodied freight emissions, services (such as public administration, education and health) also require significant freight transport. Using a consumption-based allocation of freight transport emissions allows the decarbonisation of other sectors to be complementary to the decarbonisation of transport through reduction in demand, for example through material efficiency strategies. To drive decarbonisation in maritime transport it is critical to include bunker emissions in national emissions inventories, thereby completing the system boundary.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
全球货运排放责任
陆运、海运和空运是全球有形商品贸易复杂网络的基础。货运产生的温室气体排放是全球排放的重要组成部分,预计未来几十年还将增长。然而,将货运纳入排放量核算和环境影响研究的工作往往并不完整。数据的可获得性和将货运排放分配到特定商品贸易中的困难都是造成这种情况的原因。在本研究中,通过估算全球货运路线,自下而上地估算了按运输方式划分的国际货运量。根据这些货运量估算出排放量,并与全球多区域投入产出模型相结合。这样就能计算出完整的货运排放碳足迹。我们估计,2012 年全球货运排放量为 2.8 千兆吨二氧化碳当量,约占总运输排放量的 41%。一般来说,货运足迹约占国家排放足迹的 9%。虽然实物商品(如建筑材料、食品和化石燃料)贸易与最大的内含货运排放相关,但服务(如公共行政、教育和卫生)也需要大量货运。使用基于消费的货运排放分配,可以通过减少需求(例如通过材料效率战略)使其他部门的去碳化与运输的去碳化相辅相成。要推动海运业的去碳化,关键是要将船用燃料排放纳入国家排放清单,从而完善系统边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
期刊最新文献
Multiple-Criteria Decision Analysis for Assessments of Chemical Alternatives (MCDA-ACA) Global Freight Transport Emissions Responsibility Ultra-High Adsorption Capacity of Calcium–Iron Layered Double Hydroxides for HEDP Removal through Phase Transition Processes Ethylene Glycol (EG)-Derived Chlorine-Resistant Cu0/TiO2–x for Efficient Photocatalytic Degradation of Nitrate to N2 without Sacrificial Agents at Near-Neutral pH Conditions: The Synergistic Effects of Cu0 and EG Radicals Free Chlorine Can Inhibit Lead Solder Corrosion via Electrochemical Reversal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1