{"title":"Constraining burdened PBHs with gravitational waves","authors":"Basabendu Barman, Kousik Loho and Óscar Zapata","doi":"10.1088/1475-7516/2024/10/065","DOIUrl":null,"url":null,"abstract":"We investigate the implications of memory burden on the gravitational wave (GW) spectrum arising from the Hawking evaporation of light primordial black holes (PBHs). By considering both rotating (Kerr) and non-rotating (Schwarzschild) PBHs, we demonstrate that the overproduction of primordial GWs from burdened PBHs could impose stringent constraints on the parameters governing backreaction effects. These constraints, derived from ΔNeff measurements by Planck and prospective experiments such as CMB-S4 and CMB-HD, offer novel insights into the impact of memory burden on PBH dynamics.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"17 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2024/10/065","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate the implications of memory burden on the gravitational wave (GW) spectrum arising from the Hawking evaporation of light primordial black holes (PBHs). By considering both rotating (Kerr) and non-rotating (Schwarzschild) PBHs, we demonstrate that the overproduction of primordial GWs from burdened PBHs could impose stringent constraints on the parameters governing backreaction effects. These constraints, derived from ΔNeff measurements by Planck and prospective experiments such as CMB-S4 and CMB-HD, offer novel insights into the impact of memory burden on PBH dynamics.
期刊介绍:
Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.