An oxygen-defective framework with intensified Lewis acidity reinforcing composite electrolyte for all-solid-state lithium metal batteries

IF 18.9 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Energy Storage Materials Pub Date : 2024-10-18 DOI:10.1016/j.ensm.2024.103847
Tong Duan, Jiamin Li, Lanlin Li, Qiangchao Sun, Xionggang Lu, Hongwei Cheng
{"title":"An oxygen-defective framework with intensified Lewis acidity reinforcing composite electrolyte for all-solid-state lithium metal batteries","authors":"Tong Duan,&nbsp;Jiamin Li,&nbsp;Lanlin Li,&nbsp;Qiangchao Sun,&nbsp;Xionggang Lu,&nbsp;Hongwei Cheng","doi":"10.1016/j.ensm.2024.103847","DOIUrl":null,"url":null,"abstract":"<div><div>Composite solid electrolytes (CSEs) are considered a key component of all-solid-state lithium metal batteries, regarded as the next generation of energy storage devices with high energy density and long operating life. Numerous studies have shown that the performance of CSEs is closely related to the structure of the fillers and the interactions between fillers and other components, including polymer matrices and lithium salts. To create more abundant interaction sites in CSEs, we designed a nanostructured framework with intensified Lewis acidity (PVDF-HFP/Ov-CeO<sub>2</sub>) for poly(ethylene) oxide (PEO) electrolyte (denoted as Ov-CeO<sub>2</sub>-CSE). The mystery concerning the nanostructured framework adsorbs with PEO polymer and dissociates TFSI<sup>−</sup> and its influence on the electrochemical lithium ions storage performance is meticulously revealed by coupling experimental with theoretical results. Impressively, the prepared Ov-CeO<sub>2</sub>-CSE shows improved ionic conductivity (1.76 × 10<sup>−4</sup> S cm<sup>−1</sup> at 30 °C) and a good lithium-ion transference number (0.49). The Li||Ov-CeO<sub>2</sub>-CSE||Li cell exhibits great cyclability over 3500 h at a current density of 0.1 mA cm<sup>−2</sup> (areal capacity: 0.1 mAh cm<sup>−2</sup>, 60 °C). Furthermore, the Li||Ov-CeO<sub>2</sub>-CSE||LFP cell delivers a high specific capacity of 154.6 mAh <em>g</em><sup>−1</sup> at a current density of 0.5 C, stably maintained over 500 cycles. This work provides a potential strategy for designing multifunctional frameworks by efficient interfaces to build advanced all-solid-state lithium metal batteries.</div></div>","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"73 ","pages":"Article 103847"},"PeriodicalIF":18.9000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405829724006731","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Composite solid electrolytes (CSEs) are considered a key component of all-solid-state lithium metal batteries, regarded as the next generation of energy storage devices with high energy density and long operating life. Numerous studies have shown that the performance of CSEs is closely related to the structure of the fillers and the interactions between fillers and other components, including polymer matrices and lithium salts. To create more abundant interaction sites in CSEs, we designed a nanostructured framework with intensified Lewis acidity (PVDF-HFP/Ov-CeO2) for poly(ethylene) oxide (PEO) electrolyte (denoted as Ov-CeO2-CSE). The mystery concerning the nanostructured framework adsorbs with PEO polymer and dissociates TFSI and its influence on the electrochemical lithium ions storage performance is meticulously revealed by coupling experimental with theoretical results. Impressively, the prepared Ov-CeO2-CSE shows improved ionic conductivity (1.76 × 10−4 S cm−1 at 30 °C) and a good lithium-ion transference number (0.49). The Li||Ov-CeO2-CSE||Li cell exhibits great cyclability over 3500 h at a current density of 0.1 mA cm−2 (areal capacity: 0.1 mAh cm−2, 60 °C). Furthermore, the Li||Ov-CeO2-CSE||LFP cell delivers a high specific capacity of 154.6 mAh g−1 at a current density of 0.5 C, stably maintained over 500 cycles. This work provides a potential strategy for designing multifunctional frameworks by efficient interfaces to build advanced all-solid-state lithium metal batteries.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于全固态锂金属电池的具有强化路易斯酸性的缺氧框架强化复合电解质
复合固体电解质(CSE)被认为是全固态锂金属电池的关键成分,而全固态锂金属电池则被视为具有高能量密度和长工作寿命的下一代储能设备。大量研究表明,复合电解质的性能与填料的结构以及填料与聚合物基质和锂盐等其他成分之间的相互作用密切相关。为了在 CSE 中创造更多的相互作用位点,我们为聚环氧乙烷(PEO)电解质设计了一种具有更强路易斯酸度的纳米结构框架(PVDF-HFP/Ov-CeO2)(称为 Ov-CeO2-CSE)。通过将实验结果与理论结果相结合,细致地揭示了纳米结构框架吸附 PEO 聚合物并解离 TFSI- 及其对电化学锂离子存储性能影响的奥秘。令人印象深刻的是,制备的 Ov-CeO2-CSE 显示出更高的离子电导率(30 °C时为 1.76 × 10-4 S cm-1)和良好的锂离子传输数(0.49)。在 0.1 mA cm-2 的电流密度下,锂离子电池可循环使用 3500 小时(等容量:0.1 mAh cm-2,60 °C)。此外,在 0.5 C 的电流密度下,锂|Ov-CeO2-CSE||LFP 电池可提供 154.6 mAh g-1 的高比容量,并可在 500 次循环中稳定保持。这项工作为通过高效界面设计多功能框架以构建先进的全固态锂金属电池提供了一种潜在的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy Storage Materials
Energy Storage Materials Materials Science-General Materials Science
CiteScore
33.00
自引率
5.90%
发文量
652
审稿时长
27 days
期刊介绍: Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field. Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy. Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.
期刊最新文献
Optimized molecular interactions significantly enhance capacitive energy storage in polymer blends at 150 °C A High Power Flexible Zn-Air Battery via Concurrent PAA Modulation and Structural Tuning Surface acidity regulation for boosting Li2O2 decomposition towards lower charge overpotential Li–O2 batteries “Preferential Adsorption-Decomposition and Strong Binding” Strategy-Derived Interphase Enabling Fast-Charging and Wide-Temperature Sodium Metal Batteries Unlocking Advanced Sodium Storage Performance: High-Entropy Modulates Crystallographic Sites with Reversible Multi-Electron Reaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1