Sajid Ullah Khan, Meshal Alharbi, Sajid Shah, Mohammed ELAffendi
{"title":"Medical Image Fusion for Multiple Diseases Features Enhancement","authors":"Sajid Ullah Khan, Meshal Alharbi, Sajid Shah, Mohammed ELAffendi","doi":"10.1002/ima.23197","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Throughout the past 20 years, medical imaging has found extensive application in clinical diagnosis. Doctors may find it difficult to diagnose diseases using only one imaging modality. The main objective of multimodal medical image fusion (MMIF) is to improve both the accuracy and quality of clinical assessments by extracting structural and spectral information from source images. This study proposes a novel MMIF method to assist doctors and postoperations such as image segmentation, classification, and further surgical procedures. Initially, the intensity-hue-saturation (IHS) model is utilized to decompose the positron emission tomography (PET)/single photon emission computed tomography (SPECT) image, followed by a hue-angle mapping method to discriminate high- and low-activity regions in the PET images. Then, a proposed structure feature adjustment (SFA) mechanism is used as a fusion strategy for high- and low-activity regions to obtain structural and anatomical details with minimum color distortion. In the second step, a new multi-discriminator generative adversarial network (MDcGAN) approach is proposed for obtaining the final fused image. The qualitative and quantitative results demonstrate that the proposed method is superior to existing MMIF methods in preserving the structural, anatomical, and functional details of the PET/SPECT images. Through our assessment, involving visual analysis and subsequent verification using statistical metrics, it becomes evident that color changes contribute substantial visual information to the fusion of PET and MR images. The quantitative outcomes demonstrate that, in the majority of cases, the proposed algorithm consistently outperformed other methods. Yet, in a few instances, it achieved the second-highest results. The validity of the proposed method was confirmed using diverse modalities, encompassing a total of 1012 image pairs.</p>\n </div>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"34 6","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.23197","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Throughout the past 20 years, medical imaging has found extensive application in clinical diagnosis. Doctors may find it difficult to diagnose diseases using only one imaging modality. The main objective of multimodal medical image fusion (MMIF) is to improve both the accuracy and quality of clinical assessments by extracting structural and spectral information from source images. This study proposes a novel MMIF method to assist doctors and postoperations such as image segmentation, classification, and further surgical procedures. Initially, the intensity-hue-saturation (IHS) model is utilized to decompose the positron emission tomography (PET)/single photon emission computed tomography (SPECT) image, followed by a hue-angle mapping method to discriminate high- and low-activity regions in the PET images. Then, a proposed structure feature adjustment (SFA) mechanism is used as a fusion strategy for high- and low-activity regions to obtain structural and anatomical details with minimum color distortion. In the second step, a new multi-discriminator generative adversarial network (MDcGAN) approach is proposed for obtaining the final fused image. The qualitative and quantitative results demonstrate that the proposed method is superior to existing MMIF methods in preserving the structural, anatomical, and functional details of the PET/SPECT images. Through our assessment, involving visual analysis and subsequent verification using statistical metrics, it becomes evident that color changes contribute substantial visual information to the fusion of PET and MR images. The quantitative outcomes demonstrate that, in the majority of cases, the proposed algorithm consistently outperformed other methods. Yet, in a few instances, it achieved the second-highest results. The validity of the proposed method was confirmed using diverse modalities, encompassing a total of 1012 image pairs.
期刊介绍:
The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals.
IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging.
The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered.
The scope of the journal includes, but is not limited to, the following in the context of biomedical research:
Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.;
Neuromodulation and brain stimulation techniques such as TMS and tDCS;
Software and hardware for imaging, especially related to human and animal health;
Image segmentation in normal and clinical populations;
Pattern analysis and classification using machine learning techniques;
Computational modeling and analysis;
Brain connectivity and connectomics;
Systems-level characterization of brain function;
Neural networks and neurorobotics;
Computer vision, based on human/animal physiology;
Brain-computer interface (BCI) technology;
Big data, databasing and data mining.