Preparation of High Thermal Conductivity Graphene Films by Rapid Reduction with Low Energy Consumption

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Materials & Interfaces Pub Date : 2024-10-17 DOI:10.1021/acsami.4c10163
Ning Li, Junhao Liu, Wenfang Zeng, Yawei Xu, Jing Li
{"title":"Preparation of High Thermal Conductivity Graphene Films by Rapid Reduction with Low Energy Consumption","authors":"Ning Li, Junhao Liu, Wenfang Zeng, Yawei Xu, Jing Li","doi":"10.1021/acsami.4c10163","DOIUrl":null,"url":null,"abstract":"In the domain of smart electronic devices, graphene films play a pivotal role due to their flexibility and high thermal conductivity. Within the realm of fabricating highly thermally conductive graphene films, Joule heating technology has garnered significant attention because of its capability for rapid temperature elevation and reduction of graphitization duration. However, substantial gas emission occurs during the reduction of graphene oxide films using this method, leading to immediate combustion and film fracturing, thereby limiting the rapid and uninterrupted production of graphene films. To address this challenge, a rapid reduction preparation process is introduced. This process initiates with a two-step reduction of graphene oxide films employing a reducing agent to establish gas escape pathways within the graphene films beforehand. Subsequently, the film is pressurized and Joule-heated using a graphite plate, with the entire heating process lasting only 800 s. The resulting graphene film exhibits a remarkable thermal conductivity of up to 1012W/(m·K). This method enhances the production efficiency of high thermal conductivity graphene films and is expected to further reduce production costs.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c10163","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In the domain of smart electronic devices, graphene films play a pivotal role due to their flexibility and high thermal conductivity. Within the realm of fabricating highly thermally conductive graphene films, Joule heating technology has garnered significant attention because of its capability for rapid temperature elevation and reduction of graphitization duration. However, substantial gas emission occurs during the reduction of graphene oxide films using this method, leading to immediate combustion and film fracturing, thereby limiting the rapid and uninterrupted production of graphene films. To address this challenge, a rapid reduction preparation process is introduced. This process initiates with a two-step reduction of graphene oxide films employing a reducing agent to establish gas escape pathways within the graphene films beforehand. Subsequently, the film is pressurized and Joule-heated using a graphite plate, with the entire heating process lasting only 800 s. The resulting graphene film exhibits a remarkable thermal conductivity of up to 1012W/(m·K). This method enhances the production efficiency of high thermal conductivity graphene films and is expected to further reduce production costs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用低能耗快速还原法制备高导热石墨烯薄膜
在智能电子设备领域,石墨烯薄膜因其柔韧性和高导热性而发挥着举足轻重的作用。在制造高导热石墨烯薄膜领域,焦耳加热技术因其能够快速升温并缩短石墨化时间而备受关注。然而,使用这种方法还原氧化石墨烯薄膜时会产生大量气体,导致立即燃烧和薄膜断裂,从而限制了石墨烯薄膜的快速、不间断生产。为了应对这一挑战,我们引入了一种快速还原制备工艺。该工艺首先采用还原剂对氧化石墨烯薄膜进行两步还原,以事先在石墨烯薄膜内建立气体逸出通道。随后,使用石墨板对薄膜进行加压和焦耳加热,整个加热过程仅持续 800 秒。这种方法提高了高导热石墨烯薄膜的生产效率,有望进一步降低生产成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
期刊最新文献
Solid-State Lithium Batteries with In Situ Polymerized Acrylate-Based Electrolytes Capable of Electrochemically Stable Operation at 100 °C From Wet to Protective: Film Formation in Waterborne Coatings Enhanced Weighted Mobility Induced High Thermoelectric Performance in Argyrodite Ag8SnSe6 Symmetry-Engineered BINOL-Based Porous Aromatic Frameworks for H2O2 Production via Artificial Photosynthesis and In Situ Degradation of Pharmaceutical Pollutants MgF2 Interface Engineering Promotes the Growth and Stability of LiF-Rich Solid–Electrolyte Interphases on Si-C
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1