Ingrid Eythorsdottir, Øyvind Gløersen, Hannah Rice, Amelie Werkhausen, Gertjan Ettema, Fredrik Mentzoni, Paul Solberg, Kolbjørn Lindberg, Gøran Paulsen
{"title":"The Battle of the Equations: A Systematic Review of Jump Height Calculations Using Force Platforms","authors":"Ingrid Eythorsdottir, Øyvind Gløersen, Hannah Rice, Amelie Werkhausen, Gertjan Ettema, Fredrik Mentzoni, Paul Solberg, Kolbjørn Lindberg, Gøran Paulsen","doi":"10.1007/s40279-024-02098-x","DOIUrl":null,"url":null,"abstract":"<p>Vertical jump height measures our ability to oppose gravity and lower body neuromuscular function in athletes and various clinical populations. Vertical jump tests are principally simple, time-efficient, and extensively used for assessing athletes and generally in sport science research. Using the force platform for jump height estimates is increasingly popular owing to technological advancements and its relative ease of use in diverse settings. However, ground reaction force data can be analyzed in multiple ways to estimate jump height, leading to distinct outcome values from the same jump. In the literature, four equations have been commonly described for estimating jump height using the force platform, where jump height can vary by up to <span>\\(\\sim\\)</span> 15 cm when these equations are used on the same jump. There are advantages and disadvantages to each of the equations according to the intended use. Considerations of (i) the jump type, (ii) the reason for testing, and (iii) the definition of jump height should ideally determine which equation to apply. The different jump height equations can lead to confusion and inappropriate comparisons of jump heights. Considering the popularity of reporting jump height results, both in the literature and in practice, there is a significant need to understand how the different mathematical approaches influence jump height. This review aims to investigate how different equations affect the assessment of jump height using force platforms across various jump types, such as countermovement jumps, squat jumps, drop jumps, and loaded jumps.</p>","PeriodicalId":21969,"journal":{"name":"Sports Medicine","volume":"109 1","pages":""},"PeriodicalIF":9.3000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sports Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s40279-024-02098-x","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPORT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Vertical jump height measures our ability to oppose gravity and lower body neuromuscular function in athletes and various clinical populations. Vertical jump tests are principally simple, time-efficient, and extensively used for assessing athletes and generally in sport science research. Using the force platform for jump height estimates is increasingly popular owing to technological advancements and its relative ease of use in diverse settings. However, ground reaction force data can be analyzed in multiple ways to estimate jump height, leading to distinct outcome values from the same jump. In the literature, four equations have been commonly described for estimating jump height using the force platform, where jump height can vary by up to \(\sim\) 15 cm when these equations are used on the same jump. There are advantages and disadvantages to each of the equations according to the intended use. Considerations of (i) the jump type, (ii) the reason for testing, and (iii) the definition of jump height should ideally determine which equation to apply. The different jump height equations can lead to confusion and inappropriate comparisons of jump heights. Considering the popularity of reporting jump height results, both in the literature and in practice, there is a significant need to understand how the different mathematical approaches influence jump height. This review aims to investigate how different equations affect the assessment of jump height using force platforms across various jump types, such as countermovement jumps, squat jumps, drop jumps, and loaded jumps.
期刊介绍:
Sports Medicine focuses on providing definitive and comprehensive review articles that interpret and evaluate current literature, aiming to offer insights into research findings in the sports medicine and exercise field. The journal covers major topics such as sports medicine and sports science, medical syndromes associated with sport and exercise, clinical medicine's role in injury prevention and treatment, exercise for rehabilitation and health, and the application of physiological and biomechanical principles to specific sports.
Types of Articles:
Review Articles: Definitive and comprehensive reviews that interpret and evaluate current literature to provide rationale for and application of research findings.
Leading/Current Opinion Articles: Overviews of contentious or emerging issues in the field.
Original Research Articles: High-quality research articles.
Enhanced Features: Additional features like slide sets, videos, and animations aimed at increasing the visibility, readership, and educational value of the journal's content.
Plain Language Summaries: Summaries accompanying articles to assist readers in understanding important medical advances.
Peer Review Process:
All manuscripts undergo peer review by international experts to ensure quality and rigor. The journal also welcomes Letters to the Editor, which will be considered for publication.