Professional soccer players are advised to consume 3–8 g kg–1 body mass day–1 of carbohydrate (CHO) on the basis of training demands, fixture schedule and personal objectives. However, owing to the lack of randomized controlled trials on elite players, these guidelines largely rely on data interpretation and practitioner experience.
To identify the gaps in existing literature that inform CHO guidelines for soccer players.
A scoping review was conducted without date restrictions up to 21 March 2024, employing a three-step search strategy to identify relevant English-language primary and secondary articles through PubMed and reference searching. Data were extracted using a standardized audit tool from studies assessing direct and indirect impacts of CHO on soccer players’ performance and health.
Within 258 studies identified, experimental studies were the most common (~ 36%), followed by observational (~ 33%) and narrative reviews (~ 26%), with systematic reviews, meta-analyses and case studies making up the rest (~ 5%). Most observational studies were field-based (~ 98%), while experimental studies were laboratory-based (~ 75%). Among 4475 participants, ~ 16% were female, and only ~ 12% of the original research was exclusively conducted on female players. Observational studies included developmental (~ 52%) and professional players (~ 31%), whereas experimental studies primarily featured recreationally active (~ 40%) and collegiate/university participants (~ 26%). Key research topics were ‘dietary intake’ (~ 52%) and “energy expenditure and dietary intake” (~ 30%) for observational studies and ‘CHO interventions’ (~ 74%) for experimental studies. Only eight experimental studies exclusively involved professional players, focusing on CHO intervention (n = 7) and CHO co-ingestion (n = 1). Narrative reviews were published in journals with higher impact factor (4.1 ± 6.4) than were observational studies (3.2 ± 1.6, p < 0.001) and experimental studies (3.4 ± 1.6, p < 0.001). Narrative reviews had the most studies, with Altmetric scores ≥ 20 (n = 26), followed by experimental (n = 16) and observational studies (n = 14).
Current CHO guidelines for elite soccer players lack experimental research specific to professional and world-class players. More field-based experimental trials involving elite soccer players are required to ensure evidence-based CHO recommendations.
In response to exercise, protein kinases and signaling networks are engaged to blunt homeostatic threats generated by acute contraction-induced increases in skeletal muscle energy and oxygen demand, as well as serving roles in the adaptive response to chronic exercise training to blunt future disruptions to homeostasis. High-intensity interval training (HIIT) is a time-efficient exercise modality that induces superior or similar health-promoting skeletal muscle and whole-body adaptations compared with prolonged, moderate-intensity continuous training (MICT). However, the skeletal muscle signaling pathways underlying HIIT’s exercise intensity-specific adaptive responses are unknown.
We mapped human muscle kinases, substrates, and signaling pathways activated/deactivated by an acute bout of HIIT versus work-matched MICT.
In a randomized crossover trial design (Australian New Zealand Clinical Trials Registry number ACTRN12619000819123; prospectively registered 6 June 2019), ten healthy male participants (age 25.4 ± 3.2 years; BMI 23.5 ± 1.6 kg/m2; (dot{V}{text{O}}_{2} max) 37.9 ± 5.2 ml/kg/min, mean values ± SD) completed a single bout of HIIT and MICT cycling separated by ≥ 10 days and matched for total work (67.9 ± 10.2 kJ) and duration (10 min). Mass spectrometry-based phosphoproteomic analysis of muscle biopsy samples collected before, during (5 min), and immediately following (10 min) each exercise bout, to map acute temporal signaling responses to HIIT and MICT, identified and quantified 14,931 total phosphopeptides, corresponding to 8509 phosphorylation sites.
Bioinformatic analyses uncovered exercise intensity-specific signaling networks, including > 1000 differentially phosphorylated sites (± 1.5-fold change; adjusted P < 0.05; ≥ 3 participants) after 5 min and 10 min HIIT and/or MICT relative to rest. After 5 and 10 min, 92 and 348 sites were differentially phosphorylated by HIIT, respectively, versus MICT. Plasma lactate concentrations throughout HIIT were higher than MICT (P < 0.05), and correlation analyses identified > 3000 phosphosites significantly correlated with lactate (q < 0.05) including top functional phosphosites underlying metabolic regulation.
Collectively, this first global map of the work-matched HIIT versus MICT signaling networks has revealed rapid exercise intensity-specific regulation of kinases, substrates, and pathways in human skeletal muscle that may contribute to HIIT’s skeletal muscle adaptations and health-promoting effects.
Preprint: The preprint version of this work is available on medRxiv, https://doi.org/10:1101/2024.07.11.24310302.
Field-based sport research involves studies that collect data from athletes and/or teams during competition and/or their daily training environments. Over the last decade, sport-specific field-based research projects have significantly increased in number and complexity, partially owing to the further development of more portable measurement equipment (e.g., indirect calorimetry, desktop blood/gas analyzers, portable laboratories, etc.) and/or wearable or consumable technologies (e.g., smart watches, sensors, core temp pills, etc.). However, given these rapid advances and novelty, challenges remain in the validity and applicability of these devices. Unfortunately, there are no global ethical or best-practice standards for the use of portable devices and/or wearables in sport; however, this review will outline various opportunities and challenges. Many decision trade-offs are required when designing field-based research studies to balance gold-standard scientific rigor and strict research control with highly applied, but less-controlled, “real-world” conditions. To our knowledge, there are no narrative reviews that take a wholistic view of the logistical and methodological considerations of field-based research in athletes. Accordingly, this review takes a multi-disciplinary methodological approach (physiological, nutritional/energetic, biomechanical, musculoskeletal, cognitive, and psychosocial factors), along with the logistical considerations involved in project planning, research design, and ethics of field-based research with elite athletes and/or teams. We also provide practical guidance for characterizing the extreme demands of elite training and competition to support research that ultimately catalyzes improved understanding of the limits of human capacity. We hope this review can serve as a practical guide for researchers undertaking elite athlete field-based research.
Various exercise interventions are recommended to reduce the risk of anterior cruciate ligament (ACL) injury in females. However, the extent to which these training interventions influence lower-limb landing biomechanics in youth female remains unclear.
This systematic review and meta-analysis aimed to quantitatively summarise the effectiveness of various training interventions on jump-landing biomechanics in youth females.
We systematically searched PubMed, SPORTDiscus, EMBASE and Scopus. Articles were included if they: (1) conducted research on uninjured youth females (reported mean age < 18 years) with no restriction on playing level/experience or physical activity level; (2) performed any form of training intervention for ≥ 4 weeks; (3) reported any lower-limb kinematic (flexion/extension, adduction/abduction or internal/external rotation angles) or kinetic (joint moments or vertical ground reaction forces) data during the landing phase of jump-landing tasks, pre- and post-training intervention for both experimental and control groups, using a two- or three-dimensional motion capture system; (4) were randomised- or non-randomised controlled trials. The quality of the randomised controlled trials was assessed using the Risk of Bias tool 2, whereas the Downs and Black checklist was used for assessing the quality of non-randomised controlled trials. A multi-level meta-analytical model was used for conducting the quantitative analysis.
Thirteen studies (7 randomised controlled, 6 non-randomised controlled studies) involving 648 female participants were included in the final analyses. With regards to the overall quality of the included studies, three studies had high risk of bias while ten studies had some concerns. As part of the meta-analysis, we were able to analyse seven kinematic variables and two kinetic variables in aggregate. Compared with controls, the experimental group had significantly increased peak knee flexion angle (g = 0.58, p = 0.05) and reduced knee valgus motion (g = − 0.86, p = 0.05) post-intervention. The effects on other kinematic and kinetic variables ranged from trivial to moderate and were not significantly altered as a result of various training interventions.
The findings from the synthesised literature indicate that training interventions have small to moderate effects on peak knee flexion angle and knee valgus motion during jumping tasks. However, further research employing more consistent study designs and methodologies is required to better understand the changes in jump-landing biomechanics in the youth female population following training interventions.
Peripheral blood stem cell (PBSC) donation is the primary procedure used to collect haemopoietic stem cells (HSCs) for transplantation in individuals with haematological malignancies. More than 90,000 HSC transplants take place globally each year, and there is an increasing need to guarantee HSC mobilisation, improve tolerability to apheresis, and optimise immune reconstitution. Currently, mobilisation of HSCs depends upon pharmacological agents, with donors inactive during their subsequent apheresis. A successful yield of HSCs is not always achieved, and greater efficiency of collection procedures would improve the donors’ safety and experience, along with the overall functioning of apheresis departments. The mobilisation of immune cells during bouts of exercise has been increasingly studied over the past 40 years. Exercise enriches peripheral blood with HSCs and immune cells such as cytolytic natural killer cells, and these may impact upon collection efficiency and patient outcomes following transplantation. Using exercise in conjunction with routine pharmaceutical agents may meet these needs. This article describes the impact of exercise on the quantity and engraftment potential of HSCs. Given that PBSC collections take on average 3–4 h per day per donor, and often consecutive days to complete, particular attention is paid to adopting interval exercise in this setting. Moreover, practical and safety considerations for allogeneic and autologous donors are discussed. ‘Intra-apheresis cycling’ is proposed as a feasible adjunctive strategy to evoke clinically significant improvements in the quality of the immune graft. Further research is needed to validate this concept in conjunction with routine mobilisation agents.
Using directly measured cardiorespiratory fitness (i.e. VO2max) in epidemiological/population studies is rare due to practicality issues. As such, predicting VO2max is an attractive alternative. Most equations that predict VO2max adopt additive rather than multiplicative models despite evidence that the latter provides superior fits and more biologically interpretable models. Furthermore, incorporating some but not all confounding variables may lead to inflated mass exponents (∝ M0.75) as in the allometric cascade.
Hence, the purpose of the current study was to develop multiplicative, allometric models to predict VO2max incorporating most well-known, but some less well-known confounding variables (FVC, forced vital capacity; FEV1, forced expiratory volume in 1 s) that might provide a more dimensionally valid model (∝ M2/3) originally proposed by Astrand and Rodahl.
We adopted the following three-dimensional multiplicative allometric model for VO2max (l⋅min−1) = Mk1·HTk2·WCk3·exp(a + b·age + c·age2 + d·%fat)·ε, (M, body mass; HT, height; WC, waist circumference; %fat, percentage body fat). Model comparisons (goodness-of-fit) between the allometric and equivalent additive models was assessed using the Akaike information criterion plus residual diagnostics. Note that the intercept term ‘a’ was allowed to vary for categorical fixed factors such as sex and physical inactivity.
Analyses revealed that significant predictors of VO2max were physical inactivity, M, WC, age2, %fat, plus FVC, FEV1. The body-mass exponent was k1 = 0.695 (M0.695), approximately∝M2/3. However, the calculated effect-sizes identified age2 and physical inactivity, not mass, as the strongest predictors of VO2max. The quality-of-fit of the allometric models were superior to equivalent additive models.
Results provide compelling evidence that multiplicative allometric models incorporating FVC and FEV1 are dimensionally and theoretically superior at predicting VO2max(l⋅min−1) compared with additive models. If FVC and FEV1 are unavailable, a satisfactory model was obtained simply by using HT as a surrogate.