Circular photocurrents in centrosymmetric semiconductors with hidden spin polarization

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2024-10-19 DOI:10.1038/s41467-024-53425-9
Kexin Wang, Butian Zhang, Chengyu Yan, Luojun Du, Shun Wang
{"title":"Circular photocurrents in centrosymmetric semiconductors with hidden spin polarization","authors":"Kexin Wang, Butian Zhang, Chengyu Yan, Luojun Du, Shun Wang","doi":"10.1038/s41467-024-53425-9","DOIUrl":null,"url":null,"abstract":"<p>Centrosymmetric materials with site inversion asymmetries possess hidden spin polarization, which remains challenging to be converted into spin currents because the global inversion symmetry is still conserved. This study demonstrates the spin-polarized circular photocurrents in centrosymmetric transition metal dichalcogenide semiconductors at normal incidence without applying electric bias. The global inversion symmetry is broken by using a spatially-varying circularly polarized light beam, which could generate spin gradient owing to the hidden spin polarization. The dependence of the circular photocurrents on electrode configuration, illumination position, and beam spot size indicates an emergence of circulating electric current under spatially inhomogeneous light, which is associated with the deflection of spin-polarized current through the inverse spin Hall effect. The circular photocurrents is subsequently utilized to probe the spin polarization and the inverse spin Hall effect under different excitation wavelengths and temperatures. The results of this study demonstrate the feasibility of using centrosymmetric materials with hidden spin polarization and non-vanishing Berry curvature for spintronic device applications.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":null,"pages":null},"PeriodicalIF":14.7000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-53425-9","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Centrosymmetric materials with site inversion asymmetries possess hidden spin polarization, which remains challenging to be converted into spin currents because the global inversion symmetry is still conserved. This study demonstrates the spin-polarized circular photocurrents in centrosymmetric transition metal dichalcogenide semiconductors at normal incidence without applying electric bias. The global inversion symmetry is broken by using a spatially-varying circularly polarized light beam, which could generate spin gradient owing to the hidden spin polarization. The dependence of the circular photocurrents on electrode configuration, illumination position, and beam spot size indicates an emergence of circulating electric current under spatially inhomogeneous light, which is associated with the deflection of spin-polarized current through the inverse spin Hall effect. The circular photocurrents is subsequently utilized to probe the spin polarization and the inverse spin Hall effect under different excitation wavelengths and temperatures. The results of this study demonstrate the feasibility of using centrosymmetric materials with hidden spin polarization and non-vanishing Berry curvature for spintronic device applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有隐藏自旋极化的中心对称半导体中的环形光电流
具有位点反转不对称性的中心对称材料具有隐藏的自旋极化,但由于全局反转对称性仍然保持不变,因此要将其转化为自旋电流仍然具有挑战性。本研究证明了中心对称过渡金属二掺杂半导体在正常入射条件下无需施加电偏压即可产生自旋极化环形光电流。通过使用空间变化的圆偏振光束,全局反转对称性被打破,由于隐藏的自旋偏振,圆偏振光束可以产生自旋梯度。环形光电流对电极配置、照明位置和光束光斑大小的依赖性表明,在空间不均匀光下出现了环形电流,这与通过逆自旋霍尔效应产生的自旋极化电流偏转有关。随后,利用环形光电流探测了不同激发波长和温度下的自旋极化和逆自旋霍尔效应。这项研究的结果证明了将具有隐藏自旋极化和贝里曲率不成正比的中心对称材料用于自旋电子器件应用的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
High drain field impact ionization transistors as ideal switches Glucose metabolism controls monocyte homeostasis and migration but has no impact on atherosclerosis development in mice Identifying septic shock subgroups to tailor fluid strategies through multi-omics integration The homeodomain regulates stable DNA binding of prostate cancer target ONECUT2 Circular photocurrents in centrosymmetric semiconductors with hidden spin polarization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1