Crustal melting and continent uplift by mafic underplating at convergent boundaries

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2024-10-19 DOI:10.1038/s41467-024-53435-7
Zhipeng Zhou, Hans Thybo, Irina M. Artemieva, Timothy Kusky, Chi-Chia Tang
{"title":"Crustal melting and continent uplift by mafic underplating at convergent boundaries","authors":"Zhipeng Zhou, Hans Thybo, Irina M. Artemieva, Timothy Kusky, Chi-Chia Tang","doi":"10.1038/s41467-024-53435-7","DOIUrl":null,"url":null,"abstract":"<p>The thick crust of the southern Tibetan and central Andean plateaus includes high-conductivity, low-velocity zones ascribed to partial melt. The melt origin and effect on plateau uplift remain speculative, in particular if plateau uplift happens before continental collision. The East Anatolian Plateau (EAP) has experienced similar, more recent uplift but its structure is largely unknown. Here we present an 80 km deep geophysical model across EAP, constrained by seismic receiver functions integrated with interpretation of gravity data and seismic tomographic, magnetotelluric, geothermal, and geochemical models. The results indicate a 20 km thick lower crustal layer and a 10 km thick mid-crustal layer, which both contain pockets of partial melt. We explain plateau uplift by isostatic equilibration following magmatism associated with roll-back and break-off of the Neo-Tethys slab. Our results suggest that crustal thickening by felsic melt and mafic underplate are important for plateau uplift in the EAP, Andes and Tibet.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"11 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-53435-7","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The thick crust of the southern Tibetan and central Andean plateaus includes high-conductivity, low-velocity zones ascribed to partial melt. The melt origin and effect on plateau uplift remain speculative, in particular if plateau uplift happens before continental collision. The East Anatolian Plateau (EAP) has experienced similar, more recent uplift but its structure is largely unknown. Here we present an 80 km deep geophysical model across EAP, constrained by seismic receiver functions integrated with interpretation of gravity data and seismic tomographic, magnetotelluric, geothermal, and geochemical models. The results indicate a 20 km thick lower crustal layer and a 10 km thick mid-crustal layer, which both contain pockets of partial melt. We explain plateau uplift by isostatic equilibration following magmatism associated with roll-back and break-off of the Neo-Tethys slab. Our results suggest that crustal thickening by felsic melt and mafic underplate are important for plateau uplift in the EAP, Andes and Tibet.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
汇聚边界的岩浆下溢导致的地壳熔化和大陆隆起
西藏南部和安第斯中部高原的厚地壳包括高导电性、低速度区,被认为是部分熔融区。熔融的起源及其对高原隆起的影响仍有待推测,特别是如果高原隆起发生在大陆碰撞之前。东安纳托利亚高原(EAP)最近也经历了类似的隆升,但其结构在很大程度上还不为人知。在此,我们提出了一个横跨东安纳托利亚高原 80 公里深的地球物理模型,该模型由地震接收函数、重力数据解释以及地震层析成像、磁辐射、地热和地球化学模型构成。结果表明,地壳下层厚 20 千米,地壳中层厚 10 千米,两者都含有部分熔融区。我们通过与新特提斯板块回滚和断裂有关的岩浆活动之后的等静力平衡来解释高原隆起。我们的研究结果表明,长熔岩和黑云母底板造成的地壳增厚对东亚太平洋地区、安第斯山脉和西藏的高原隆升非常重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Author Correction: Catalytic peptide-based coacervates for enhanced function through structural organization and substrate specificity A proteogenomic analysis of cervical cancer reveals therapeutic and biological insights Adsorptive-dissolution of O2 into the potential nanospace of a densely fluorinated metal-organic framework Designing giant Hall response in layered topological semimetals Photo-induced carboxylation of C(sp2)−S bonds in aryl thiols and derivatives with CO2
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1