Grigorii Skorupskii, Fabio Orlandi, Iñigo Robredo, Milena Jovanovic, Rinsuke Yamada, Fatmagül Katmer, Maia G. Vergniory, Pascal Manuel, Max Hirschberger, Leslie M. Schoop
{"title":"Designing giant Hall response in layered topological semimetals","authors":"Grigorii Skorupskii, Fabio Orlandi, Iñigo Robredo, Milena Jovanovic, Rinsuke Yamada, Fatmagül Katmer, Maia G. Vergniory, Pascal Manuel, Max Hirschberger, Leslie M. Schoop","doi":"10.1038/s41467-024-54203-3","DOIUrl":null,"url":null,"abstract":"<p>Noncoplanar magnets are excellent candidates for spintronics. However, such materials are difficult to find, and even more so to intentionally design. Here, we report a chemical design strategy that allows us to find a series of noncoplanar magnets—Ln<sub>3</sub>Sn<sub>7</sub> (Ln = Dy, Tb)—by targeting layered materials that have decoupled magnetic sublattices with dissimilar single-ion anisotropies and combining those with a square-net topological semimetal sublattice. Ln<sub>3</sub>Sn<sub>7</sub> shows high carrier mobilities upwards of 17,000 cm<sup>2</sup> <span>⋅</span> V<sup>−1</sup> <span>⋅</span> s<sup>−1</sup>, and hosts noncoplanar magnetic order. This results in a giant Hall response with an anomalous Hall angle of 0.17 and Hall conductivity of over 42,000 <i>Ω</i><sup>−1</sup> <span>⋅</span> cm<sup>−1</sup>—a value over an order of magnitude larger than the established benchmarks in Co<sub>3</sub>Sn<sub>2</sub>S<sub>2</sub> and Fe thin films.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"26 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54203-3","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Noncoplanar magnets are excellent candidates for spintronics. However, such materials are difficult to find, and even more so to intentionally design. Here, we report a chemical design strategy that allows us to find a series of noncoplanar magnets—Ln3Sn7 (Ln = Dy, Tb)—by targeting layered materials that have decoupled magnetic sublattices with dissimilar single-ion anisotropies and combining those with a square-net topological semimetal sublattice. Ln3Sn7 shows high carrier mobilities upwards of 17,000 cm2⋅ V−1⋅ s−1, and hosts noncoplanar magnetic order. This results in a giant Hall response with an anomalous Hall angle of 0.17 and Hall conductivity of over 42,000 Ω−1⋅ cm−1—a value over an order of magnitude larger than the established benchmarks in Co3Sn2S2 and Fe thin films.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.