Multi-particle quantum walks on 3D integrated photonic chip

IF 3.5 3区 医学 Q2 CHEMISTRY, MEDICINAL ACS Medicinal Chemistry Letters Pub Date : 2024-10-19 DOI:10.1038/s41377-024-01627-7
Wen-Hao Zhou, Xiao-Wei Wang, Ruo-Jing Ren, Yu-Xuan Fu, Yi-Jun Chang, Xiao-Yun Xu, Hao Tang, Xian-Min Jin
{"title":"Multi-particle quantum walks on 3D integrated photonic chip","authors":"Wen-Hao Zhou, Xiao-Wei Wang, Ruo-Jing Ren, Yu-Xuan Fu, Yi-Jun Chang, Xiao-Yun Xu, Hao Tang, Xian-Min Jin","doi":"10.1038/s41377-024-01627-7","DOIUrl":null,"url":null,"abstract":"<p>Quantum walks provide a speed-up in computational power for various quantum algorithms and serve as inspiration for the construction of complex graph representations. Many pioneering works have been dedicated to expanding the experimental state space and the complexity of graphs. However, these experiments are mostly limited to small experimental scale, which do not reach a many-body level and fail to reflect the multi-particle quantum interference effects among non-adjacent modes. Here, we present a quantum walk with three photons on a two-dimensional triangular lattice, which is mapped to a 19 × 19 × 19 high-dimensional state space and constructs a complex graph with 6859 nodes and 45,486 edges. By utilizing the statistical signatures of the output combinations and incorporating machine learning techniques, we successfully validate the nonclassical properties of the experiment. Our implementation provides a paradigm for exponentially expanding the state space and graph complexity of quantum walks, paving the way for surmounting the classical regime in large-scale quantum simulations.</p>","PeriodicalId":20,"journal":{"name":"ACS Medicinal Chemistry Letters","volume":"233 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Medicinal Chemistry Letters","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-024-01627-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum walks provide a speed-up in computational power for various quantum algorithms and serve as inspiration for the construction of complex graph representations. Many pioneering works have been dedicated to expanding the experimental state space and the complexity of graphs. However, these experiments are mostly limited to small experimental scale, which do not reach a many-body level and fail to reflect the multi-particle quantum interference effects among non-adjacent modes. Here, we present a quantum walk with three photons on a two-dimensional triangular lattice, which is mapped to a 19 × 19 × 19 high-dimensional state space and constructs a complex graph with 6859 nodes and 45,486 edges. By utilizing the statistical signatures of the output combinations and incorporating machine learning techniques, we successfully validate the nonclassical properties of the experiment. Our implementation provides a paradigm for exponentially expanding the state space and graph complexity of quantum walks, paving the way for surmounting the classical regime in large-scale quantum simulations.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三维集成光子芯片上的多粒子量子行走
量子行走为各种量子算法提供了更快的计算能力,也为复杂图表示的构建提供了灵感。许多开创性工作致力于拓展实验状态空间和图的复杂性。然而,这些实验大多局限于较小的实验尺度,没有达到多体水平,无法反映非相邻模式之间的多粒子量子干涉效应。在这里,我们提出了一种在二维三角形晶格上进行三光子量子行走的方法,它被映射到 19 × 19 × 19 的高维状态空间,并构建了一个有 6859 个节点和 45486 条边的复杂图。通过利用输出组合的统计特征并结合机器学习技术,我们成功地验证了实验的非经典特性。我们的实现为指数级扩展量子行走的状态空间和图复杂性提供了范例,为在大规模量子模拟中超越经典机制铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Medicinal Chemistry Letters
ACS Medicinal Chemistry Letters CHEMISTRY, MEDICINAL-
CiteScore
7.30
自引率
2.40%
发文量
328
审稿时长
1 months
期刊介绍: ACS Medicinal Chemistry Letters is interested in receiving manuscripts that discuss various aspects of medicinal chemistry. The journal will publish studies that pertain to a broad range of subject matter, including compound design and optimization, biological evaluation, drug delivery, imaging agents, and pharmacology of both small and large bioactive molecules. Specific areas include but are not limited to: Identification, synthesis, and optimization of lead biologically active molecules and drugs (small molecules and biologics) Biological characterization of new molecular entities in the context of drug discovery Computational, cheminformatics, and structural studies for the identification or SAR analysis of bioactive molecules, ligands and their targets, etc. Novel and improved methodologies, including radiation biochemistry, with broad application to medicinal chemistry Discovery technologies for biologically active molecules from both synthetic and natural (plant and other) sources Pharmacokinetic/pharmacodynamic studies that address mechanisms underlying drug disposition and response Pharmacogenetic and pharmacogenomic studies used to enhance drug design and the translation of medicinal chemistry into the clinic Mechanistic drug metabolism and regulation of metabolic enzyme gene expression Chemistry patents relevant to the medicinal chemistry field.
期刊最新文献
Issue Editorial Masthead Issue Publication Information In This Issue, Volume 15, Issue 11 The brightest multi-colour phonon lasers If you can’t beat them, join them: Anti-CRISPR proteins derived from CRISPR-associated genes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1