Yongling Mu , Shengbo Chen , Yijing Cao , Bingxue Zhu , Anzhen Li , Liang Cui , Rui Dai , Qinghong Zeng
{"title":"Tracking the impact of typhoons on maize growth and recovery using Sentinel-1 and Sentinel-2 data: A case study of Northeast China","authors":"Yongling Mu , Shengbo Chen , Yijing Cao , Bingxue Zhu , Anzhen Li , Liang Cui , Rui Dai , Qinghong Zeng","doi":"10.1016/j.agrformet.2024.110266","DOIUrl":null,"url":null,"abstract":"<div><div>The increasing frequency of typhoon events, attributed to global climate change, has significantly affected agricultural production, predominantly resulting in substantial negative consequences. Accurate and timely assessment of crop damage is crucial for understanding economic implications, devising effective agricultural strategies, and enhancing resilience amid mounting climate uncertainties. This study investigates the utility of Sentinel-1 Synthetic Aperture Radar (SAR) and Sentinel-2 MultiSpectral Instrument (MSI) data in tracking maize damage severity following typhoon events. By employing continuous field sampling techniques and conducting visual interpretation of high-resolution remote sensing imagery, sample sets representing a spectrum of maize damage severity were systematically established. The application of time series analysis on Sentinel data enables a comprehensive exploration of spectral and polarization responses, providing insights into the correlation with maize damage severity. Segmentation of the maize damage timeline into pre-disaster, disaster, and recovery periods, coupled with optimization of relevant feature parameters, was undertaken to bolster monitoring precision. Leveraging the Google Earth Engine (GEE) cloud platform, a Random Forest algorithm was used to develop a model for monitoring maize damage severity across different post-typhoon periods, yielding maps delineating the distribution and magnitude of maize damage in Northeast China. Results indicate that integrating spectral indices from the pre-disaster phase with backscatter variations of polarization bands during various post-typhoon periods enhances maize damage assessment. Maize damage severity is notably elevated during the disaster period, achieving an overall accuracy of 87.22 %. While mitigated during the recovery phase, localized exacerbation occurs in severely affected regions, yielding an overall accuracy of 88.54 %. Analysis incorporating terrain and meteorological data reveals that post-typhoon maize disasters predominantly occur in low-lying and flat areas, with meteorological factors, particularly maximum wind speed and daily cumulative precipitation, exerting significant influence on damage severity. This study underscores the critical role of SAR and optical data fusion in elucidating typhoon-induced crop damage dynamics, thereby providing essential insights for proactive mitigation strategies against future agricultural losses.</div></div>","PeriodicalId":50839,"journal":{"name":"Agricultural and Forest Meteorology","volume":"359 ","pages":"Article 110266"},"PeriodicalIF":5.7000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural and Forest Meteorology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168192324003794","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing frequency of typhoon events, attributed to global climate change, has significantly affected agricultural production, predominantly resulting in substantial negative consequences. Accurate and timely assessment of crop damage is crucial for understanding economic implications, devising effective agricultural strategies, and enhancing resilience amid mounting climate uncertainties. This study investigates the utility of Sentinel-1 Synthetic Aperture Radar (SAR) and Sentinel-2 MultiSpectral Instrument (MSI) data in tracking maize damage severity following typhoon events. By employing continuous field sampling techniques and conducting visual interpretation of high-resolution remote sensing imagery, sample sets representing a spectrum of maize damage severity were systematically established. The application of time series analysis on Sentinel data enables a comprehensive exploration of spectral and polarization responses, providing insights into the correlation with maize damage severity. Segmentation of the maize damage timeline into pre-disaster, disaster, and recovery periods, coupled with optimization of relevant feature parameters, was undertaken to bolster monitoring precision. Leveraging the Google Earth Engine (GEE) cloud platform, a Random Forest algorithm was used to develop a model for monitoring maize damage severity across different post-typhoon periods, yielding maps delineating the distribution and magnitude of maize damage in Northeast China. Results indicate that integrating spectral indices from the pre-disaster phase with backscatter variations of polarization bands during various post-typhoon periods enhances maize damage assessment. Maize damage severity is notably elevated during the disaster period, achieving an overall accuracy of 87.22 %. While mitigated during the recovery phase, localized exacerbation occurs in severely affected regions, yielding an overall accuracy of 88.54 %. Analysis incorporating terrain and meteorological data reveals that post-typhoon maize disasters predominantly occur in low-lying and flat areas, with meteorological factors, particularly maximum wind speed and daily cumulative precipitation, exerting significant influence on damage severity. This study underscores the critical role of SAR and optical data fusion in elucidating typhoon-induced crop damage dynamics, thereby providing essential insights for proactive mitigation strategies against future agricultural losses.
期刊介绍:
Agricultural and Forest Meteorology is an international journal for the publication of original articles and reviews on the inter-relationship between meteorology, agriculture, forestry, and natural ecosystems. Emphasis is on basic and applied scientific research relevant to practical problems in the field of plant and soil sciences, ecology and biogeochemistry as affected by weather as well as climate variability and change. Theoretical models should be tested against experimental data. Articles must appeal to an international audience. Special issues devoted to single topics are also published.
Typical topics include canopy micrometeorology (e.g. canopy radiation transfer, turbulence near the ground, evapotranspiration, energy balance, fluxes of trace gases), micrometeorological instrumentation (e.g., sensors for trace gases, flux measurement instruments, radiation measurement techniques), aerobiology (e.g. the dispersion of pollen, spores, insects and pesticides), biometeorology (e.g. the effect of weather and climate on plant distribution, crop yield, water-use efficiency, and plant phenology), forest-fire/weather interactions, and feedbacks from vegetation to weather and the climate system.