{"title":"Gold nanoprism enhanced SERS aptasensor for simultaneous detection of thrombin and VEGF","authors":"","doi":"10.1016/j.snb.2024.136811","DOIUrl":null,"url":null,"abstract":"<div><div>Sensitive detection of disease-specific biomarkers with high accuracy is crucial for early diagnosis, therapeutic monitoring, and understanding underlying pathological mechanisms. Traditional methods, such as immunohistochemistry and enzyme-linked immunosorbent assays (ELISA), face limitations due to the complex and expensive production of antibodies. In this context, aptamers, short oligonucleotides with advantages like easy synthesis, low cost, high specificity, and stability, have emerged as promising alternatives for biomolecular sensing. In this study, we introduce a surface-enhanced Raman spectroscopy (SERS) aptasensor for the multiplexed detection of human α-thrombin and vascular endothelial growth factor (VEGF-165). By leveraging aptamer-based biorecognition elements, our approach capitalizes on the small gaps created by aptamers, generating intense electromagnetic hotspots that significantly amplify the SERS signal. This enables simultaneous detection of human α-thrombin and VEGF-165 with remarkable sensitivity (100 fM and 1 pM, respectively). Notably, we also employ a digital protocol for analyzing the obtained vibrational spectra, marking the first-time utilization of this method for such aptasensors and offering precise quantification even at ultralow concentration regimes. We envision the reported aptasensor provides a roadmap for developing superior aptamer-based spectroscopical tools for a wide range of applications in biology and medicine.</div></div>","PeriodicalId":425,"journal":{"name":"Sensors and Actuators B: Chemical","volume":null,"pages":null},"PeriodicalIF":8.0000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators B: Chemical","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925400524015417","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Sensitive detection of disease-specific biomarkers with high accuracy is crucial for early diagnosis, therapeutic monitoring, and understanding underlying pathological mechanisms. Traditional methods, such as immunohistochemistry and enzyme-linked immunosorbent assays (ELISA), face limitations due to the complex and expensive production of antibodies. In this context, aptamers, short oligonucleotides with advantages like easy synthesis, low cost, high specificity, and stability, have emerged as promising alternatives for biomolecular sensing. In this study, we introduce a surface-enhanced Raman spectroscopy (SERS) aptasensor for the multiplexed detection of human α-thrombin and vascular endothelial growth factor (VEGF-165). By leveraging aptamer-based biorecognition elements, our approach capitalizes on the small gaps created by aptamers, generating intense electromagnetic hotspots that significantly amplify the SERS signal. This enables simultaneous detection of human α-thrombin and VEGF-165 with remarkable sensitivity (100 fM and 1 pM, respectively). Notably, we also employ a digital protocol for analyzing the obtained vibrational spectra, marking the first-time utilization of this method for such aptasensors and offering precise quantification even at ultralow concentration regimes. We envision the reported aptasensor provides a roadmap for developing superior aptamer-based spectroscopical tools for a wide range of applications in biology and medicine.
期刊介绍:
Sensors & Actuators, B: Chemical is an international journal focused on the research and development of chemical transducers. It covers chemical sensors and biosensors, chemical actuators, and analytical microsystems. The journal is interdisciplinary, aiming to publish original works showcasing substantial advancements beyond the current state of the art in these fields, with practical applicability to solving meaningful analytical problems. Review articles are accepted by invitation from an Editor of the journal.