tigeR: Tumor immunotherapy gene expression data analysis R package

IF 23.7 Q1 MICROBIOLOGY iMeta Pub Date : 2024-08-06 DOI:10.1002/imt2.229
Yihao Chen, Li-Na He, Yuanzhe Zhang, Jingru Gong, Shuangbin Xu, Yuelong Shu, Di Zhang, Guangchuang Yu, Zhixiang Zuo
{"title":"tigeR: Tumor immunotherapy gene expression data analysis R package","authors":"Yihao Chen,&nbsp;Li-Na He,&nbsp;Yuanzhe Zhang,&nbsp;Jingru Gong,&nbsp;Shuangbin Xu,&nbsp;Yuelong Shu,&nbsp;Di Zhang,&nbsp;Guangchuang Yu,&nbsp;Zhixiang Zuo","doi":"10.1002/imt2.229","DOIUrl":null,"url":null,"abstract":"<p>Immunotherapy shows great promise for treating advanced cancers, but its effectiveness varies widely among different patients and cancer types. Identifying biomarkers and developing robust predictive models to discern which patients are most likely to benefit from immunotherapy is of great importance. In this context, we have developed the tumor immunotherapy gene expression R package (tigeR 1.0) to address the increasing need for effective tools to explore biomarkers and construct predictive models. tigeR encompasses four distinct yet closely interconnected modules. The Biomarker Evaluation module enables researchers to evaluate whether the biomarkers of interest are associated with immunotherapy response via built-in or custom immunotherapy gene expression data. The Tumor Microenvironment Deconvolution module integrates 10 open-source algorithms to obtain the proportions of different cell types within the tumor microenvironment, facilitating the investigation of the association between immune cell populations and immunotherapy response. The Prediction Model Construction module equips users with the ability to construct sophisticated prediction models using a range of built-in machine-learning algorithms. The Response Prediction module predicts the immunotherapy response for the patients from gene expression data using our pretrained machine learning models or public gene expression signatures. By providing these diverse functionalities, tigeR aims to simplify the process of analyzing immunotherapy gene expression data, thus making it accessible to researchers without advanced programming skills. The source code and example for the tigeR project can be accessed at http://github.com/YuLab-SMU/tigeR.</p>","PeriodicalId":73342,"journal":{"name":"iMeta","volume":"3 5","pages":""},"PeriodicalIF":23.7000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/imt2.229","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"iMeta","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/imt2.229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Immunotherapy shows great promise for treating advanced cancers, but its effectiveness varies widely among different patients and cancer types. Identifying biomarkers and developing robust predictive models to discern which patients are most likely to benefit from immunotherapy is of great importance. In this context, we have developed the tumor immunotherapy gene expression R package (tigeR 1.0) to address the increasing need for effective tools to explore biomarkers and construct predictive models. tigeR encompasses four distinct yet closely interconnected modules. The Biomarker Evaluation module enables researchers to evaluate whether the biomarkers of interest are associated with immunotherapy response via built-in or custom immunotherapy gene expression data. The Tumor Microenvironment Deconvolution module integrates 10 open-source algorithms to obtain the proportions of different cell types within the tumor microenvironment, facilitating the investigation of the association between immune cell populations and immunotherapy response. The Prediction Model Construction module equips users with the ability to construct sophisticated prediction models using a range of built-in machine-learning algorithms. The Response Prediction module predicts the immunotherapy response for the patients from gene expression data using our pretrained machine learning models or public gene expression signatures. By providing these diverse functionalities, tigeR aims to simplify the process of analyzing immunotherapy gene expression data, thus making it accessible to researchers without advanced programming skills. The source code and example for the tigeR project can be accessed at http://github.com/YuLab-SMU/tigeR.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
tigeR:肿瘤免疫疗法基因表达数据分析 R 软件包
免疫疗法在治疗晚期癌症方面大有可为,但其疗效在不同患者和癌症类型之间存在很大差异。识别生物标志物和开发强大的预测模型以确定哪些患者最有可能从免疫疗法中获益具有重要意义。在此背景下,我们开发了肿瘤免疫疗法基因表达 R 软件包(tigeR 1.0),以满足对探索生物标记物和构建预测模型的有效工具日益增长的需求。生物标志物评估模块使研究人员能够通过内置或定制的免疫疗法基因表达数据,评估感兴趣的生物标志物是否与免疫疗法反应相关。肿瘤微环境解卷积模块集成了 10 种开源算法,可获得肿瘤微环境中不同细胞类型的比例,从而有助于研究免疫细胞群与免疫疗法反应之间的关联。预测模型构建模块使用户能够利用一系列内置机器学习算法构建复杂的预测模型。反应预测模块利用我们预训练的机器学习模型或公共基因表达特征,从基因表达数据中预测患者的免疫治疗反应。通过提供这些不同的功能,tigeR 旨在简化免疫疗法基因表达数据的分析过程,从而使没有高级编程技能的研究人员也能使用它。有关 tigeR 项目的源代码和示例,请访问 http://github.com/YuLab-SMU/tigeR。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.80
自引率
0.00%
发文量
0
期刊最新文献
Gut Bifidobacterium pseudocatenulatum protects against fat deposition by enhancing secondary bile acid biosynthesis. Comprehensive lung microbial gene and genome catalogs assist the mechanism survey of Mesomycoplasma hyopneumoniae strains causing pig lung lesions. Pangenome and genome variation analyses of pigs unveil genomic facets for their adaptation and agronomic characteristics. Transcriptome-wide association identifies KLC1 as a regulator of mitophagy in non-syndromic cleft lip with or without palate. Unraveling the diversity dynamics and network stability of alkaline phosphomonoesterase-producing bacteria in modulating maize yield.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1