Zhengyin Piao, Amma Asantewaa Agyei Boakye, Yuan Yao
{"title":"Environmental impacts of biodegradable microplastics","authors":"Zhengyin Piao, Amma Asantewaa Agyei Boakye, Yuan Yao","doi":"10.1038/s44286-024-00127-0","DOIUrl":null,"url":null,"abstract":"Biodegradable plastics, perceived as ‘environmentally friendly’ materials, may end up in natural environments. This impact is often overlooked in the literature due to a lack of assessment methods. This study develops an integrated life cycle impact assessment methodology to assess the climate-change and aquatic-ecotoxicity impacts of biodegradable microplastics in freshwater ecosystems. Our results reveal that highly biodegradable microplastics have lower aquatic ecotoxicity but higher greenhouse gas (GHG) emissions. The extent of burden shifting depends on microplastic size and density. Plastic biodegradation in natural environments can result in higher GHG emissions than biodegradation in engineered end of life (for example, anaerobic digestion), contributing substantially to the life cycle GHG emissions of biodegradable plastics (excluding the use phase). A sensitivity analysis identified critical biodegradation rates for different plastic sizes that result in maximum GHG emissions. This work advances understanding of the environmental impacts of biodegradable plastics, providing an approach for the assessment and design of future plastics. Biodegradable plastics, often considered environmentally friendly, may contribute to environmental impacts in natural ecosystems, which are not fully understood due to inadequate assessment methods. The authors develop a life cycle impact assessment method to evaluate the climate-change and aquatic-ecotoxicity impacts of biodegradable microplastics in freshwater environments and support the design of future plastics.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"1 10","pages":"661-669"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44286-024-00127-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44286-024-00127-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Biodegradable plastics, perceived as ‘environmentally friendly’ materials, may end up in natural environments. This impact is often overlooked in the literature due to a lack of assessment methods. This study develops an integrated life cycle impact assessment methodology to assess the climate-change and aquatic-ecotoxicity impacts of biodegradable microplastics in freshwater ecosystems. Our results reveal that highly biodegradable microplastics have lower aquatic ecotoxicity but higher greenhouse gas (GHG) emissions. The extent of burden shifting depends on microplastic size and density. Plastic biodegradation in natural environments can result in higher GHG emissions than biodegradation in engineered end of life (for example, anaerobic digestion), contributing substantially to the life cycle GHG emissions of biodegradable plastics (excluding the use phase). A sensitivity analysis identified critical biodegradation rates for different plastic sizes that result in maximum GHG emissions. This work advances understanding of the environmental impacts of biodegradable plastics, providing an approach for the assessment and design of future plastics. Biodegradable plastics, often considered environmentally friendly, may contribute to environmental impacts in natural ecosystems, which are not fully understood due to inadequate assessment methods. The authors develop a life cycle impact assessment method to evaluate the climate-change and aquatic-ecotoxicity impacts of biodegradable microplastics in freshwater environments and support the design of future plastics.