Role of intermetallic networks in developing high-performance austenitic steel

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Acta Materialia Pub Date : 2024-10-20 DOI:10.1016/j.actamat.2024.120494
C. Hu, Y.X. Liu, B.B. He, M.X. Huang
{"title":"Role of intermetallic networks in developing high-performance austenitic steel","authors":"C. Hu, Y.X. Liu, B.B. He, M.X. Huang","doi":"10.1016/j.actamat.2024.120494","DOIUrl":null,"url":null,"abstract":"Austenitic steels are renowned for exceptional ductility and toughness, yet their widespread application is hindered by low strength. Enhancing their strength while preserving ductility is crucial for scientific and industrial purposes. In this study, we successfully fabricated heterostructured austenitic steels via stepwise controllable precipitation and recrystallization and break the strength-ductility trade-off. Initial precipitation induces nonshearable B<sub>2</sub> nanoprecipitates within the austenitic matrix, and subsequent partial recrystallization introduces intermetallic B<sub>2</sub> networks along deformation bands. Advanced characterizations verify that the dense nanoprecipitates in the matrix confer high strength, while the networks accommodate strain through nanoparticle formation and anisotropic plastic deformation of the B<sub>2</sub> phase, as well as the stacking faults and mechanical twins within austenite. Collectively, these mechanisms contribute to a high yield strength of 1200 MPa and good ductility of 25%, exceeding previous high-performance austenitic steels. This work can provide insights into the design of strong and ductile austenitic steels and the processing-microstructure-property relationship of heterostructured materials.","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.actamat.2024.120494","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Austenitic steels are renowned for exceptional ductility and toughness, yet their widespread application is hindered by low strength. Enhancing their strength while preserving ductility is crucial for scientific and industrial purposes. In this study, we successfully fabricated heterostructured austenitic steels via stepwise controllable precipitation and recrystallization and break the strength-ductility trade-off. Initial precipitation induces nonshearable B2 nanoprecipitates within the austenitic matrix, and subsequent partial recrystallization introduces intermetallic B2 networks along deformation bands. Advanced characterizations verify that the dense nanoprecipitates in the matrix confer high strength, while the networks accommodate strain through nanoparticle formation and anisotropic plastic deformation of the B2 phase, as well as the stacking faults and mechanical twins within austenite. Collectively, these mechanisms contribute to a high yield strength of 1200 MPa and good ductility of 25%, exceeding previous high-performance austenitic steels. This work can provide insights into the design of strong and ductile austenitic steels and the processing-microstructure-property relationship of heterostructured materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
金属间网络在开发高性能奥氏体钢中的作用
奥氏体钢以出色的延展性和韧性而闻名,但其广泛应用却因强度低而受到阻碍。在保持延展性的同时提高其强度对科学和工业用途至关重要。在这项研究中,我们通过逐步可控析出和再结晶,成功地制造出了异质结构奥氏体钢,并打破了强度-韧性之间的权衡。初始沉淀在奥氏体基体中诱导出不可剪切的 B2 纳米沉淀物,随后的部分再结晶沿着变形带引入了金属间 B2 网络。先进的表征验证了基体中致密的纳米沉淀物具有高强度,而网络则通过纳米颗粒的形成和 B2 相的各向异性塑性变形以及奥氏体内部的堆叠断层和机械孪晶来适应应变。这些机制共同作用,使屈服强度高达 1200 兆帕,延展性高达 25%,超过了以往的高性能奥氏体钢。这项研究成果可为高强度、高延展性奥氏体钢的设计以及异质结构材料的加工-微结构-性能关系提供启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Materialia
Acta Materialia 工程技术-材料科学:综合
CiteScore
16.10
自引率
8.50%
发文量
801
审稿时长
53 days
期刊介绍: Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.
期刊最新文献
The deformation mechanisms responsible for strain localization in nanotwinned nickel alloys Defect engineering of charge transport and photovoltaic effect in BiFeO3 films Characteristic deformation microstructure evolution and deformation mechanisms in face-centered cubic high/medium entropy alloys Role of intermetallic networks in developing high-performance austenitic steel Intergranular phase transformation in post-sinter annealed Nd–Dy–Fe–Cu–Ga–B magnet: from Ia3¯-cubic to I4/mcm-tetragonal structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1