Direct Conversion of Metal Organic Frameworks into Porous Rugby Phosphides by Plasma for Oxygen Evolution

IF 4.3 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Inorganic Chemistry Pub Date : 2024-10-20 DOI:10.1021/acs.inorgchem.4c03525
Guochang Li, Mang Niu, Rongzheng An, Huayu Zhang, Bingxue Sun, Guoling Li
{"title":"Direct Conversion of Metal Organic Frameworks into Porous Rugby Phosphides by Plasma for Oxygen Evolution","authors":"Guochang Li, Mang Niu, Rongzheng An, Huayu Zhang, Bingxue Sun, Guoling Li","doi":"10.1021/acs.inorgchem.4c03525","DOIUrl":null,"url":null,"abstract":"Electrolytic seawater is a green, sustainable, and promising approach for hydrogen production. Benefiting from the cost-effectiveness, crystal structures, and tailorable modification, transition metal phosphides become a highly attractive catalyst for the electrolysis of water. Considering the sufficient exposure and intrinsic catalytic activity of metal sites, here, carbon layer-coated NiFeP nanocrystals with a porous rugby structure are synthesized by Ar–H<sub>2</sub> plasma. Activated PH radical in plasma is the key point to achieve phosphatization at a low temperature. The obtained porous rugby NiFeP catalyst exhibits excellent catalytic activity under alkaline conditions (300 mV in freshwater and 370 mV in seawater, 1000 mA cm<sup>–2</sup>), good corrosion resistance, and superior operational stability (&gt;100 h). Theoretical calculations prove that Fe introduction and subsequent phosphorization weaken the adsorption of *O and *OH, thus improving the oxygen evolution reaction performance. Plasma phosphorization offers exciting opportunities for the in situ modification of other types of framework materials.","PeriodicalId":40,"journal":{"name":"Inorganic Chemistry","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.inorgchem.4c03525","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Electrolytic seawater is a green, sustainable, and promising approach for hydrogen production. Benefiting from the cost-effectiveness, crystal structures, and tailorable modification, transition metal phosphides become a highly attractive catalyst for the electrolysis of water. Considering the sufficient exposure and intrinsic catalytic activity of metal sites, here, carbon layer-coated NiFeP nanocrystals with a porous rugby structure are synthesized by Ar–H2 plasma. Activated PH radical in plasma is the key point to achieve phosphatization at a low temperature. The obtained porous rugby NiFeP catalyst exhibits excellent catalytic activity under alkaline conditions (300 mV in freshwater and 370 mV in seawater, 1000 mA cm–2), good corrosion resistance, and superior operational stability (>100 h). Theoretical calculations prove that Fe introduction and subsequent phosphorization weaken the adsorption of *O and *OH, thus improving the oxygen evolution reaction performance. Plasma phosphorization offers exciting opportunities for the in situ modification of other types of framework materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用等离子体将金属有机框架直接转化为多孔磷化钌,以实现氧气进化
电解海水是一种绿色、可持续且前景广阔的制氢方法。得益于成本效益、晶体结构和可定制的改性,过渡金属磷化物成为一种极具吸引力的电解水催化剂。考虑到金属位点的充分暴露和内在催化活性,本文采用 Ar-H2 等离子体合成了具有多孔橄结构的碳层包覆镍铁磷酸纳米晶体。等离子体中活化的 PH 自由基是实现低温磷化的关键点。所获得的多孔橄榄球状 NiFeP 催化剂在碱性条件下(淡水中 300 mV,海水中 370 mV,1000 mA cm-2)表现出优异的催化活性、良好的耐腐蚀性和超强的运行稳定性(100 h)。理论计算证明,铁的引入和随后的磷化削弱了 *O 和 *OH 的吸附,从而提高了氧进化反应的性能。等离子体磷化为原位改性其他类型的框架材料提供了令人兴奋的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Inorganic Chemistry
Inorganic Chemistry 化学-无机化学与核化学
CiteScore
7.60
自引率
13.00%
发文量
1960
审稿时长
1.9 months
期刊介绍: Inorganic Chemistry publishes fundamental studies in all phases of inorganic chemistry. Coverage includes experimental and theoretical reports on quantitative studies of structure and thermodynamics, kinetics, mechanisms of inorganic reactions, bioinorganic chemistry, and relevant aspects of organometallic chemistry, solid-state phenomena, and chemical bonding theory. Emphasis is placed on the synthesis, structure, thermodynamics, reactivity, spectroscopy, and bonding properties of significant new and known compounds.
期刊最新文献
Switchable Photovoltaic Effect and Robust Nonlinear Optical Response in a High-Temperature Molecular Ferroelectric [C8N2H22][PbI4] Engineering Interlayer Space and Composite of Square-Shaped V2O5 by PVP-Assisted Polyaniline Intercalation and Graphene for Aqueous Zinc-Ion Batteries Direct Conversion of Metal Organic Frameworks into Porous Rugby Phosphides by Plasma for Oxygen Evolution Ultrafast and Highly Selective Sequestration of Radioactive Barium Ions by a Layered Thiostannate Realizing Near-Unity Photoluminescence Efficiency in Antimony-Doped Indium-Based Halides Induced by Strong Electron–Phonon Coupling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1