All the sites we cannot see: Sources and mitigation of false negatives in RNA modification studies

IF 81.3 1区 生物学 Q1 CELL BIOLOGY Nature Reviews Molecular Cell Biology Pub Date : 2024-10-21 DOI:10.1038/s41580-024-00784-2
Shalini Oberdoeffer, Wendy V. Gilbert
{"title":"All the sites we cannot see: Sources and mitigation of false negatives in RNA modification studies","authors":"Shalini Oberdoeffer, Wendy V. Gilbert","doi":"10.1038/s41580-024-00784-2","DOIUrl":null,"url":null,"abstract":"<p>RNA modifications are essential for human health — too much or too little of them leads to serious illnesses ranging from neurodevelopmental disorders to cancer. Technical advances in RNA modification sequencing are beginning to uncover the RNA targets of diverse RNA-modifying enzymes that are dysregulated in disease. However, the emerging transcriptome-wide maps of modified nucleosides installed by these enzymes should be considered as first drafts. In particular, a range of technical artefacts lead to false negatives — modified sites that are overlooked owing to technique-dependent, and often sequence-context-specific, ‘blind spots’. In this Review, we discuss potential sources of false negatives in sequencing-based RNA modification maps, propose mitigation strategies and suggest guidelines for transparent reporting of sensitivity to detect modified sites in profiling studies. Important considerations for recognition and avoidance of false negatives include assessment and reporting of position-specific sequencing depth, identification of protocol-dependent RNA capture biases and applying controls for false negatives as well as for false positives. Despite their limitations, emerging maps of RNA modifications reveal exciting and largely uncharted potential for post-transcriptional control of all aspects of RNA function.</p>","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":null,"pages":null},"PeriodicalIF":81.3000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Molecular Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41580-024-00784-2","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

RNA modifications are essential for human health — too much or too little of them leads to serious illnesses ranging from neurodevelopmental disorders to cancer. Technical advances in RNA modification sequencing are beginning to uncover the RNA targets of diverse RNA-modifying enzymes that are dysregulated in disease. However, the emerging transcriptome-wide maps of modified nucleosides installed by these enzymes should be considered as first drafts. In particular, a range of technical artefacts lead to false negatives — modified sites that are overlooked owing to technique-dependent, and often sequence-context-specific, ‘blind spots’. In this Review, we discuss potential sources of false negatives in sequencing-based RNA modification maps, propose mitigation strategies and suggest guidelines for transparent reporting of sensitivity to detect modified sites in profiling studies. Important considerations for recognition and avoidance of false negatives include assessment and reporting of position-specific sequencing depth, identification of protocol-dependent RNA capture biases and applying controls for false negatives as well as for false positives. Despite their limitations, emerging maps of RNA modifications reveal exciting and largely uncharted potential for post-transcriptional control of all aspects of RNA function.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
我们看不到的所有位点RNA 修饰研究中假阴性的来源与缓解
RNA 修饰对人类健康至关重要--过多或过少的 RNA 修饰会导致从神经发育障碍到癌症等各种严重疾病。RNA 修饰测序技术的进步正开始揭示在疾病中失调的各种 RNA 修饰酶的 RNA 靶标。不过,这些酶所安装的全转录组修饰核苷酸图谱应被视为初稿。特别是,一系列技术误差会导致假阴性--由于技术依赖性和通常序列上下文特异性的 "盲点 "而被忽略的修饰位点。在这篇综述中,我们讨论了基于测序的 RNA 修饰图谱中假阴性的潜在来源,提出了缓解策略,并建议了在剖析研究中透明报告检测修饰位点灵敏度的指南。识别和避免假阴性的重要考虑因素包括评估和报告特定位点的测序深度、识别依赖于协议的 RNA 捕获偏差以及对假阴性和假阳性进行控制。尽管有其局限性,但新出现的 RNA 修饰图谱揭示了转录后控制 RNA 功能各个方面的令人兴奋且基本未知的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Reviews Molecular Cell Biology
Nature Reviews Molecular Cell Biology 生物-细胞生物学
CiteScore
173.60
自引率
0.50%
发文量
118
审稿时长
6-12 weeks
期刊介绍: Nature Reviews Molecular Cell Biology is a prestigious journal that aims to be the primary source of reviews and commentaries for the scientific communities it serves. The journal strives to publish articles that are authoritative, accessible, and enriched with easily understandable figures, tables, and other display items. The goal is to provide an unparalleled service to authors, referees, and readers, and the journal works diligently to maximize the usefulness and impact of each article. Nature Reviews Molecular Cell Biology publishes a variety of article types, including Reviews, Perspectives, Comments, and Research Highlights, all of which are relevant to molecular and cell biologists. The journal's broad scope ensures that the articles it publishes reach the widest possible audience.
期刊最新文献
All the sites we cannot see: Sources and mitigation of false negatives in RNA modification studies Molecular mechanisms of mitochondrial dynamics Goodbye, senescent cells: CAR-T cells unleashed to fight ageing IL-11 as a master regulator of ageing Molecular tools for analysing in vivo senescence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1