Pub Date : 2025-12-08DOI: 10.1038/s41580-025-00941-1
Kim Baumann
Jamieson and colleagues report the effects of spaceflight on haematopoietic stem and progenitor cells isolated from astronauts.
贾米森和他的同事报告了太空飞行对从宇航员身上分离的造血干细胞和祖细胞的影响。
{"title":"Space travel affects haematopoietic stem cells","authors":"Kim Baumann","doi":"10.1038/s41580-025-00941-1","DOIUrl":"10.1038/s41580-025-00941-1","url":null,"abstract":"Jamieson and colleagues report the effects of spaceflight on haematopoietic stem and progenitor cells isolated from astronauts.","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":"27 1","pages":"7-7"},"PeriodicalIF":90.2,"publicationDate":"2025-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145704623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-05DOI: 10.1038/s41580-025-00937-x
Eytan Zlotorynski
Target-directed miRNA degradation through interaction with non-coding parts of mRNAs is required for proper mammalian development.
通过与mrna的非编码部分相互作用,靶向miRNA降解是哺乳动物正常发育所必需的。
{"title":"Developmental triggers of microRNA decay","authors":"Eytan Zlotorynski","doi":"10.1038/s41580-025-00937-x","DOIUrl":"10.1038/s41580-025-00937-x","url":null,"abstract":"Target-directed miRNA degradation through interaction with non-coding parts of mRNAs is required for proper mammalian development.","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":"27 1","pages":"4-4"},"PeriodicalIF":90.2,"publicationDate":"2025-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145680114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-04DOI: 10.1038/s41580-025-00939-9
Kim Baumann
Following skin injury, macrophages infiltrate the adipose tissue, promoting adipocyte lipolysis, and the released fatty acids induce hair regrowth by activating hair follicle stem cells.
皮肤损伤后,巨噬细胞浸润脂肪组织,促进脂肪细胞脂解,释放的脂肪酸通过激活毛囊干细胞诱导毛发再生。
{"title":"Fatty acid signalling promotes hair regrowth","authors":"Kim Baumann","doi":"10.1038/s41580-025-00939-9","DOIUrl":"10.1038/s41580-025-00939-9","url":null,"abstract":"Following skin injury, macrophages infiltrate the adipose tissue, promoting adipocyte lipolysis, and the released fatty acids induce hair regrowth by activating hair follicle stem cells.","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":"27 1","pages":"6-6"},"PeriodicalIF":90.2,"publicationDate":"2025-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145664474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-04DOI: 10.1038/s41580-025-00938-w
Lisa Heinke
The transmembrane protein lunpark is enriched at endoplasmic reticulum junctions where it acts as an organization hub, integrating translation initiation control with nutrient sensing through association with lysosomes.
{"title":"A lunapark for secretory mRNA translation at ER junctions","authors":"Lisa Heinke","doi":"10.1038/s41580-025-00938-w","DOIUrl":"10.1038/s41580-025-00938-w","url":null,"abstract":"The transmembrane protein lunpark is enriched at endoplasmic reticulum junctions where it acts as an organization hub, integrating translation initiation control with nutrient sensing through association with lysosomes.","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":"27 1","pages":"5-5"},"PeriodicalIF":90.2,"publicationDate":"2025-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145664471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-11-27DOI: 10.1038/s41580-025-00921-5
Pierre Gönczy
{"title":"Critical constituents and assembly principles of centriole biogenesis in human cells","authors":"Pierre Gönczy","doi":"10.1038/s41580-025-00921-5","DOIUrl":"https://doi.org/10.1038/s41580-025-00921-5","url":null,"abstract":"","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":"24 1","pages":""},"PeriodicalIF":112.7,"publicationDate":"2025-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145609206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-11-27DOI: 10.1038/s41580-025-00934-0
Na Sun
{"title":"Challenges and potential applications of AI in systems biology","authors":"Na Sun","doi":"10.1038/s41580-025-00934-0","DOIUrl":"https://doi.org/10.1038/s41580-025-00934-0","url":null,"abstract":"","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":"1 1","pages":""},"PeriodicalIF":112.7,"publicationDate":"2025-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145609204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-11-27DOI: 10.1038/s41580-025-00935-z
Shiri Gur-Cohen
{"title":"Like water on rock, the microenvironment bends stem cell fate","authors":"Shiri Gur-Cohen","doi":"10.1038/s41580-025-00935-z","DOIUrl":"https://doi.org/10.1038/s41580-025-00935-z","url":null,"abstract":"","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":"5 1","pages":""},"PeriodicalIF":112.7,"publicationDate":"2025-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145609461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-11-26DOI: 10.1038/s41580-025-00909-1
M. Burigotto, J. G. Carlton
{"title":"ESCRT-III function in membrane fission and repair","authors":"M. Burigotto, J. G. Carlton","doi":"10.1038/s41580-025-00909-1","DOIUrl":"https://doi.org/10.1038/s41580-025-00909-1","url":null,"abstract":"","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":"3 1","pages":""},"PeriodicalIF":112.7,"publicationDate":"2025-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145599437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-11-20DOI: 10.1038/s41580-025-00897-2
Christopher Chin Sang,Sayantani Upadhyay,Michael L Nosella,Julie D Forman-Kay,Hyun O Lee
Biomolecular condensates are non-membrane-encapsulated compartments that control various biological processes, largely by enriching and excluding certain molecules. Emerging evidence demonstrates that condensate compositions dynamically change in response to stimuli and over time. Thus, condensates that share a designation and general function can substantially vary in their composition. In this Review, we discuss the current understanding of condensate composition changes and heterogeneity, how they are regulated and how the changes affect biochemical reactions. We focus on four condensates: DNA double-strand break (DSB) repair foci, promyelocytic leukaemia (PML) nuclear bodies, processing bodies (P-bodies) and RNA transport granules, with examples from stress granules and germ granules. Changes in condensate composition seem to support complex reactions, such as those occurring in DNA repair and RNA processing. Mechanisms regulating composition changes include biophysical features of components, modifications, nodes and enzymatic reactions. We also speculate about the impact of protein mislocalization and mutations on condensate composition and function, including in cancer and neurodegenerative diseases. We conclude by discussing outstanding questions and the implications of studying condensate composition changes for research and therapeutics.
{"title":"The dynamic and heterogeneous composition of biomolecular condensates and its functional relevance.","authors":"Christopher Chin Sang,Sayantani Upadhyay,Michael L Nosella,Julie D Forman-Kay,Hyun O Lee","doi":"10.1038/s41580-025-00897-2","DOIUrl":"https://doi.org/10.1038/s41580-025-00897-2","url":null,"abstract":"Biomolecular condensates are non-membrane-encapsulated compartments that control various biological processes, largely by enriching and excluding certain molecules. Emerging evidence demonstrates that condensate compositions dynamically change in response to stimuli and over time. Thus, condensates that share a designation and general function can substantially vary in their composition. In this Review, we discuss the current understanding of condensate composition changes and heterogeneity, how they are regulated and how the changes affect biochemical reactions. We focus on four condensates: DNA double-strand break (DSB) repair foci, promyelocytic leukaemia (PML) nuclear bodies, processing bodies (P-bodies) and RNA transport granules, with examples from stress granules and germ granules. Changes in condensate composition seem to support complex reactions, such as those occurring in DNA repair and RNA processing. Mechanisms regulating composition changes include biophysical features of components, modifications, nodes and enzymatic reactions. We also speculate about the impact of protein mislocalization and mutations on condensate composition and function, including in cancer and neurodegenerative diseases. We conclude by discussing outstanding questions and the implications of studying condensate composition changes for research and therapeutics.","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":"30 1","pages":""},"PeriodicalIF":112.7,"publicationDate":"2025-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145559025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-11-18DOI: 10.1038/s41580-025-00915-3
Marjolein van Sluis, Camila Gonzalo-Hansen, Qingrong Li, Hannes Lans, Dong Wang, Jurgen A. Marteijn
{"title":"Mechanisms of transcription-coupled repair and DNA damage surveillance in health and disease","authors":"Marjolein van Sluis, Camila Gonzalo-Hansen, Qingrong Li, Hannes Lans, Dong Wang, Jurgen A. Marteijn","doi":"10.1038/s41580-025-00915-3","DOIUrl":"https://doi.org/10.1038/s41580-025-00915-3","url":null,"abstract":"","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":"155 1","pages":""},"PeriodicalIF":112.7,"publicationDate":"2025-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145536095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}