Reversible Hydrogen Acceptor–Donor Enables Relay Mechanism for Nitrate-to-Ammonia Electrocatalysis

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2024-10-21 DOI:10.1002/anie.202417631
Yuefei Li, Ye Liu, Mingkai Zhang, Linsen Li, Zhao Jiang, Bingying Han, Baojun Wang, Jiayuan Li
{"title":"Reversible Hydrogen Acceptor–Donor Enables Relay Mechanism for Nitrate-to-Ammonia Electrocatalysis","authors":"Yuefei Li, Ye Liu, Mingkai Zhang, Linsen Li, Zhao Jiang, Bingying Han, Baojun Wang, Jiayuan Li","doi":"10.1002/anie.202417631","DOIUrl":null,"url":null,"abstract":"Electrocatalytic nitrate reduction is a crucial process for sustainable ammonia production. However, to maximize ammonia yield efficiency, this technology inevitably operates at the potentials more negative than 0 V vs. RHE, leading to high energy consumption and competitive hydrogen evolution. To eradicate this issue, hydrogen tungsten bronze (HxWO3) as reversible hydrogen donor-acceptor is partnered with copper (Cu) to enable a relay mechanism at potentials positive than 0 V vs. RHE, which involves rapid intercalation of H into HxWO3 lattice, prompt de-intercalation of the lattice H and transfer onto Cu, and spontaneous H-mediated nitrate-to-ammonia conversion on Cu. The resulting catalysts demonstrated a high ammonia yield rate of 3332.9±34.1 mmol gcat−1 h−1 and a Faraday efficiency of ~100 % at 0.10 V vs. RHE, displaying a record-low estimated energy consumption of 17.6 kWh kgammonia−1. Using these catalysts, we achieve continuous ammonia production in an enlarged flow cell at a real energy consumption of 17.0 kWh kgammonia−1.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202417631","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrocatalytic nitrate reduction is a crucial process for sustainable ammonia production. However, to maximize ammonia yield efficiency, this technology inevitably operates at the potentials more negative than 0 V vs. RHE, leading to high energy consumption and competitive hydrogen evolution. To eradicate this issue, hydrogen tungsten bronze (HxWO3) as reversible hydrogen donor-acceptor is partnered with copper (Cu) to enable a relay mechanism at potentials positive than 0 V vs. RHE, which involves rapid intercalation of H into HxWO3 lattice, prompt de-intercalation of the lattice H and transfer onto Cu, and spontaneous H-mediated nitrate-to-ammonia conversion on Cu. The resulting catalysts demonstrated a high ammonia yield rate of 3332.9±34.1 mmol gcat−1 h−1 and a Faraday efficiency of ~100 % at 0.10 V vs. RHE, displaying a record-low estimated energy consumption of 17.6 kWh kgammonia−1. Using these catalysts, we achieve continuous ammonia production in an enlarged flow cell at a real energy consumption of 17.0 kWh kgammonia−1.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可逆的氢受体-捐献者实现硝酸盐-氨电催化的中继机制
电催化硝酸盐还原是可持续氨生产的关键过程。然而,为了最大限度地提高氨生产效率,该技术不可避免地要在相对于 RHE 的负电位大于 0 V 时运行,从而导致高能耗和竞争性氢进化。为解决这一问题,氢钨青铜(HxWO3)作为可逆氢供体-受体与铜(Cu)合作,在电位高于 0 V(相对于 RHE)时实现了中继机制,其中包括 H 快速插层到 HxWO3 晶格中,晶格中的 H 迅速去插层并转移到 Cu 上,以及 Cu 上自发的 H 介导的硝酸-氨转化。催化剂的氨产量高达 3332.9±34.1 mmol gcat-1 h-1,0.10 V 对 RHE 时的法拉第效率约为 100%,估计能耗为 17.6 kWh kgammonia-1,创历史新低。利用这些催化剂,我们在一个扩大的流动池中实现了连续氨生产,实际能耗为 17.0 千瓦时千克氨-1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Reversible Hydrogen Acceptor–Donor Enables Relay Mechanism for Nitrate-to-Ammonia Electrocatalysis A Grafting Hydrogen-bonded Organic Framework for Benchmark Selectivity of C2H2/CO2 Separation under Ambient Conditions A Proteomics Pipeline for Generating Clinical Grade Biomarker Candidates from Data-Independent Acquisition Mass Spectrometry (DIA-MS) Discovery [5]Helicene Based π-Conjugated Macrocycles with Persistent Figure-Eight and Möbius Shapes: Efficient Synthesis, Chiral Resolution and Bright Circularly Polarized Luminescence Formamidinium Incorporates into Rb-based Non-perovskite Phases in Solar Cell Formulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1