Ferrimagnet-Based Neuromorphic Device Mimicking the Ventral Visual Pathway for High-Accuracy Target Recognition

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Materials & Interfaces Pub Date : 2024-10-21 DOI:10.1021/acsami.4c13405
Junwei Zeng, Yabo Chen, Jiahao Liu, Teng Xu, Liang Fang, Yang Guo
{"title":"Ferrimagnet-Based Neuromorphic Device Mimicking the Ventral Visual Pathway for High-Accuracy Target Recognition","authors":"Junwei Zeng, Yabo Chen, Jiahao Liu, Teng Xu, Liang Fang, Yang Guo","doi":"10.1021/acsami.4c13405","DOIUrl":null,"url":null,"abstract":"The ventral visual pathway (VVP) of the human brain efficiently implements target recognition by employing a deep hierarchical structure to build complex visual concepts from simple features. Artificial neural networks (ANNs) based on spintronic devices are capable of target recognition, but their poor interpretability and limited network depth hinder ANNs from mimicking the VVP. Hardware implementation of the VVP requires a biorealistic spintronic device as well as the corresponding interpretable and deep network structure, which have not been reported so far. Here, we report a ferrimagnetic neuron with a continuously differentiable exponential linear unit (CeLu) activation function, which is closer to biological neurons and could mitigate the issue of limited network depth. Meanwhile, we also demonstrate that a ferrimagnet can construct artificial synapses with high linearity and symmetry to meet the requirements of weight update algorithms. Based on these neurons and synapses, we propose an all-spin convolutional neural network (CNN) with a high interpretability and deep neural network, to mimic the VVP. Compared to the state-of-the-art spintronic-based neuromorphic computing model, the CNN with bionic function, using experimentally derived device parameters, achieves high recognition accuracies of over 91% and 98% on the CIFAR-10 datasets and the MNIST datasets, respectively, showing improvements of 1.13% and 1.76%. Our work provides a promising method to improve the bionic performance of spintronic device-based neural networks.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c13405","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The ventral visual pathway (VVP) of the human brain efficiently implements target recognition by employing a deep hierarchical structure to build complex visual concepts from simple features. Artificial neural networks (ANNs) based on spintronic devices are capable of target recognition, but their poor interpretability and limited network depth hinder ANNs from mimicking the VVP. Hardware implementation of the VVP requires a biorealistic spintronic device as well as the corresponding interpretable and deep network structure, which have not been reported so far. Here, we report a ferrimagnetic neuron with a continuously differentiable exponential linear unit (CeLu) activation function, which is closer to biological neurons and could mitigate the issue of limited network depth. Meanwhile, we also demonstrate that a ferrimagnet can construct artificial synapses with high linearity and symmetry to meet the requirements of weight update algorithms. Based on these neurons and synapses, we propose an all-spin convolutional neural network (CNN) with a high interpretability and deep neural network, to mimic the VVP. Compared to the state-of-the-art spintronic-based neuromorphic computing model, the CNN with bionic function, using experimentally derived device parameters, achieves high recognition accuracies of over 91% and 98% on the CIFAR-10 datasets and the MNIST datasets, respectively, showing improvements of 1.13% and 1.76%. Our work provides a promising method to improve the bionic performance of spintronic device-based neural networks.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于铁磁体的神经形态设备模仿腹侧视觉通路实现高精度目标识别
人脑的腹侧视觉通路(VVP)通过采用深度分层结构,从简单特征中建立复杂的视觉概念,从而有效地实现目标识别。基于自旋电子设备的人工神经网络(ANN)能够进行目标识别,但其较差的可解释性和有限的网络深度阻碍了人工神经网络模拟 VVP。VVP 的硬件实现需要一个符合生物现实的自旋电子设备以及相应的可解释性和深度网络结构,而这些至今尚未见报道。在这里,我们报告了一种具有连续可微分指数线性单元(CeLu)激活函数的铁磁神经元,它更接近生物神经元,可以缓解网络深度有限的问题。同时,我们还证明铁磁体可以构建具有高线性和对称性的人工突触,以满足权重更新算法的要求。基于这些神经元和突触,我们提出了一种具有高解释性和深度神经网络的全自旋卷积神经网络(CNN),以模拟 VVP。与最先进的基于自旋电子的神经形态计算模型相比,具有仿生功能的 CNN 使用实验得出的器件参数,在 CIFAR-10 数据集和 MNIST 数据集上分别实现了 91% 和 98% 以上的高识别准确率,提高了 1.13% 和 1.76%。我们的工作为提高基于自旋电子器件的神经网络的仿生性能提供了一种很有前景的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
期刊最新文献
Solid-State Lithium Batteries with In Situ Polymerized Acrylate-Based Electrolytes Capable of Electrochemically Stable Operation at 100 °C From Wet to Protective: Film Formation in Waterborne Coatings Enhanced Weighted Mobility Induced High Thermoelectric Performance in Argyrodite Ag8SnSe6 Symmetry-Engineered BINOL-Based Porous Aromatic Frameworks for H2O2 Production via Artificial Photosynthesis and In Situ Degradation of Pharmaceutical Pollutants MgF2 Interface Engineering Promotes the Growth and Stability of LiF-Rich Solid–Electrolyte Interphases on Si-C
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1