Dual-functions of the carbon-confined oxygen on the capacitance and cycle stability enhancements of Zn-ion capacitors

IF 11.2 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Materials Science & Technology Pub Date : 2024-10-21 DOI:10.1016/j.jmst.2024.10.003
Yi Zhang, Zhimin Zou, Qi Liu, Yu Qiao, Chunhai Jiang
{"title":"Dual-functions of the carbon-confined oxygen on the capacitance and cycle stability enhancements of Zn-ion capacitors","authors":"Yi Zhang, Zhimin Zou, Qi Liu, Yu Qiao, Chunhai Jiang","doi":"10.1016/j.jmst.2024.10.003","DOIUrl":null,"url":null,"abstract":"Zinc-ion capacitors (ZICs) are promising energy storage devices due to their balance between the energy and power densities inherited from Zn-ion batteries and supercapacitors, respectively. However, the low specific capacitance of carbon cathode materials and the dendrite growth on Zn anode have set fatal drawbacks to their energy density and cycle stability. Herein, we demonstrate that, in 1 M Zn(CF<sub>3</sub>SO<sub>3</sub>)<sub>2</sub>/DMF (N, N-dimethylformamide) electrolyte, confining oxygen in carbon cathode materials via high-energy ball milling can synergistically introduce additional pseudocapacitance on the cathode side while suppressing the dendrite growth on Zn anode side, which jointly lead to high energy density (94 Wh kg<sup>−1</sup> at 448 W kg<sup>−1</sup>) and long cycle stability of ZICs. The hydroxyl group in carbon cathode can be transformed to C—O—Zn together with the release of protons during the initial discharge, which in turn stimulates the defluorination of <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow is=\"true\"&gt;&lt;mi mathvariant=\"normal\" is=\"true\"&gt;C&lt;/mi&gt;&lt;msub is=\"true\"&gt;&lt;mi mathvariant=\"normal\" is=\"true\"&gt;F&lt;/mi&gt;&lt;mn is=\"true\"&gt;3&lt;/mn&gt;&lt;/msub&gt;&lt;msubsup is=\"true\"&gt;&lt;mtext is=\"true\"&gt;SO&lt;/mtext&gt;&lt;mn is=\"true\"&gt;3&lt;/mn&gt;&lt;mo is=\"true\"&gt;&amp;#x2212;&lt;/mo&gt;&lt;/msubsup&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"3.009ex\" role=\"img\" style=\"vertical-align: -0.812ex;\" viewbox=\"0 -945.9 3815.4 1295.7\" width=\"8.862ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-43\"></use></g><g is=\"true\" transform=\"translate(722,0)\"><g is=\"true\"><use xlink:href=\"#MJMAIN-46\"></use></g><g is=\"true\" transform=\"translate(653,-150)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-33\"></use></g></g><g is=\"true\" transform=\"translate(1829,0)\"><g is=\"true\"><use xlink:href=\"#MJMAIN-53\"></use><use x=\"556\" xlink:href=\"#MJMAIN-4F\" y=\"0\"></use></g><g is=\"true\" transform=\"translate(1335,432)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2212\"></use></g><g is=\"true\" transform=\"translate(1335,-277)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-33\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mi is=\"true\" mathvariant=\"normal\">C</mi><msub is=\"true\"><mi is=\"true\" mathvariant=\"normal\">F</mi><mn is=\"true\">3</mn></msub><msubsup is=\"true\"><mtext is=\"true\">SO</mtext><mn is=\"true\">3</mn><mo is=\"true\">−</mo></msubsup></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">C</mi><msub is=\"true\"><mi mathvariant=\"normal\" is=\"true\">F</mi><mn is=\"true\">3</mn></msub><msubsup is=\"true\"><mtext is=\"true\">SO</mtext><mn is=\"true\">3</mn><mo is=\"true\">−</mo></msubsup></mrow></math></script></span> anions and formation of ZnF<sub>2</sub> on both cathode and anode. The ZnF<sub>2</sub> formed on the surface of the Zn anode suppresses the dendrite growth by regulating the Zn<sup>2+</sup> deposition/stripping in a reticular structure, resulting in the excellent cycle stability. This work provides a facile strategy to rationally design and construct high energy and stable ZICs through engineering the oxygen-bearing functional groups in carbon cathode materials.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"1 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.10.003","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Zinc-ion capacitors (ZICs) are promising energy storage devices due to their balance between the energy and power densities inherited from Zn-ion batteries and supercapacitors, respectively. However, the low specific capacitance of carbon cathode materials and the dendrite growth on Zn anode have set fatal drawbacks to their energy density and cycle stability. Herein, we demonstrate that, in 1 M Zn(CF3SO3)2/DMF (N, N-dimethylformamide) electrolyte, confining oxygen in carbon cathode materials via high-energy ball milling can synergistically introduce additional pseudocapacitance on the cathode side while suppressing the dendrite growth on Zn anode side, which jointly lead to high energy density (94 Wh kg−1 at 448 W kg−1) and long cycle stability of ZICs. The hydroxyl group in carbon cathode can be transformed to C—O—Zn together with the release of protons during the initial discharge, which in turn stimulates the defluorination of CF3SO3 anions and formation of ZnF2 on both cathode and anode. The ZnF2 formed on the surface of the Zn anode suppresses the dendrite growth by regulating the Zn2+ deposition/stripping in a reticular structure, resulting in the excellent cycle stability. This work provides a facile strategy to rationally design and construct high energy and stable ZICs through engineering the oxygen-bearing functional groups in carbon cathode materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
碳封闭氧对 Zn 离子电容器电容和循环稳定性增强的双重作用
锌离子电容器(ZIC)是一种前景广阔的储能设备,因为它兼顾了锌离子电池和超级电容器的能量密度和功率密度。然而,碳阴极材料的低比电容和锌阳极上的枝晶生长对其能量密度和循环稳定性造成了致命的缺陷。在此,我们证明了在 1 M Zn(CF3SO3)2/DMF(N, N-二甲基甲酰胺)电解液中,通过高能球磨限制碳阴极材料中的氧,可以在阴极侧协同引入额外的假电容,同时抑制锌阳极侧的枝晶生长,从而共同实现 ZIC 的高能量密度(94 Wh kg-1 at 448 W kg-1)和长周期稳定性。在初始放电过程中,碳阴极中的羟基会随着质子的释放转化为 C-O-Zn,进而刺激 CF3SO3-CF3SO3- 阴离子的脱氟反应,并在阴极和阳极上形成 ZnF2。在锌阳极表面形成的 ZnF2 通过调节网状结构中 Zn2+ 的沉积/剥离,抑制了枝晶的生长,从而实现了出色的循环稳定性。这项工作提供了一种简便的策略,通过对碳阴极材料中的含氧官能团进行工程设计,合理地设计和构建高能量和稳定的 ZIC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materials Science & Technology
Journal of Materials Science & Technology 工程技术-材料科学:综合
CiteScore
20.00
自引率
11.00%
发文量
995
审稿时长
13 days
期刊介绍: Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.
期刊最新文献
Corrigendum to “Vertical graphene-decorated carbon nanofibers establishing robust conductive networks for fiber-based stretchable strain sensors” [Journal of Materials Science & Technology 200 (2024) 52–60] Recent progress of Ti3C2Tx MXene-based layered films for electromagnetic interference shielding Janus-inspired alternating architecture CNF/MXene/ZnFe2O4@PANI composite films with outstanding electromagnetic interference shielding and Joule heating Mechanistic insights into cluster strengthening and grain refinement toughening in fully oxidized AgMgNi alloys Ti3C2Tx/CuO heterojunction for ultrafast photonics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1